
  
  
 
 
 
 
 
 
 

AMASES XLV 
                                                                               remote mode 
 

 
45th Annual Meeting of the AMASES 

Reggio Calabria, September 13-18,2021 

Parallel session “Optimal Control and Dynamics” 

 
BOOK OF ABSTRACTS 



Pursuit of One Evader by a Group of Pursuers

Mehdi Salimi

Department of Mathematics and Statistics,

McMaster University, Hamilton, ON, Canada

mehdi.salimi@mcmaster.ca

Extended abstract
1

Many works have been devoted to pursuit-evasion games [1, 2, 3]. In this
talk we study a pursuit-evasion di�erential game with a group of pursuers
and a single evader. The control functions of all pursuers and the evader
satisfy the integral constraints. The farness between the evader and the
closest pursuer when the game is �nished is the payo� function of the game.
We introduce the value of the game and identify optimal strategies of the
pursuers to complete the game. In this game there is no relation between
the energy resource of any pursuer and that of the evader.
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Extended abstract 1

In this talk we will examine the consequences of including distributed delays
in an energy model. In particular, we will present a model that has been
developed starting from C.L. Dalgaard and H. Strulik’s model [3], a mathe-
matical model of an economy viewed as a transport network for energy. The
new model has been developed by C. Bianca et al. [1], modifying the model
by C.L. Dalgaard and H. Strulik [3] with the assumption that the energy
conservation formula would be influenced by a time delay; they have showed
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that the dynamics of the system is characterized by a delay differential equa-
tion. The stability behaviour of the resulting equilibrium for our dynamic
system is analyzed including models with Dirac, weak and strong kernels.
Applying the Hopf bifurcation theorem we will determine conditions under
which limit cycle motion is born in such models. The results indicate that
distributed delays have an ambivalent impact on the dynamical behaviour of
systems, either stabilizing or destabilizing them. Afterwards, based on V.I.
Yukalov et al. [5], C. Bianca et al. [2] have adapted their ideas and pro-
posed a generalization by introducing a logistic-type equation for population
with delayed carrying capacity. In their study they have analyzed the conse-
quences of replacing time delays with distributed time delays. C. Bianca et
al. [2] have showed that the destructive impact of the agents on the carrying
capacity leads the system dynamic behaviour to exhibit stability switches
and Hopf bifurcations to occur. Now we will organize a new proposal in this
direction.
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Extended abstract

The aim of this work is to examine the publications of international co-
authors belonging to some Eastern European Countries between 1994 and
2018. In this context, we want to examine whether the association with the
European Union, as countries members or associates, favored Eastern Euro-
pean countries (referred to as East-E) by comparing all publications of these
countries with those of EU members. This research question tentatively ex-
poses the advantages in publishing under European Union schemes by the
type of a�liation to the European Union itself. To do so, it identi�es three
subregions a priori: members of the European Union (East-EU); being an
a�liated country to EU research schemes (East-AC); or neither (East-Ext).
This is tested at di�erent levels: number of publications (articles co-authored
with at least one East-E presence); centrality of a given country in the global
network of collaborations. The �ndings show that to be EU member or as-
sociated countries does play a positive role, although national di�erences
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within these di�erent types of a�liation are more relevant than those be-
tween the three sub-regions. Findings suggest further research directed at
understanding national policies concerning research, and how the European
Union might consider its contribution in the wider European Research Area.
These �ndings also suggest further research concerning the future of Eastern
Europe, especially in a possible scenario of �two-speeds integration� of the
European Union and the European Research Area.
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Social Network Analysis, International Collaborations, Western Balkans and
EU, Substitution E�ect.
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In this paper the dynamic game of catching a point moving on the geo-
metric (conjugate) graph (with rectifiable edges) in space Rd is considered.
Suppose that the graph is connected and n and l are the numbers of its
vertices and edges, respectively, the length of all edges equals to 1. The
game involves two players moving on the edges of the graph: P - the team
of pursuers controlling the movement of points P1, P2, ..., Pm and Q - the
evader controlling the point [1], [5], [6]. The maximum speed off all players
is equal to 1.

Further, we determine the natural numberN(G) [2], [3], [4]. The smallest
of the numbers m that P wins in the game is denoted by N(G). If G is the
free, then N(G) = 1, if the graph has at least one cycle, then N(G) ≥ 2. It
is obvious that N(G) is exist and N(G) ≤ n− 1.

Now, we take the point A ∈ Rd that does not belong to the graph and
connect this point with some vertex of the graph G. By connecting the point
A with the vertices of the graph G, we will obtain the a geometric graph G1

with n+ 1 vertices and l+ 1 edges, and having the properly V (G) ⊂ V (G1),
E(G) ⊂ E(G1). Assume that the length of the edge coming out of the point
A is equal to 1.

We determine the natural number k1 = N(G1) by looking at a game
involving P - a team of pursuers and the evader Q along the edges of the
graph G1.

Similarly, by connecting the point A with vertices of the graph G1, we
will create a geometric graph G2 with the number of vertices n + 1, the
number of edges l + 2. And, it holds: V (G) ⊂ V (G1) ⊂ V (G2), E(G) ⊂
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E(G1) ⊂ E(G2).
We determine the natural number k2 = N(G2) by looking pursuit-evasion

game on the edges of the graph G2.
Continuing this process, we will create a geometric graph Gi with the

number of vertices n + 1, the number of edges l + i. And, it holds: V (G) ⊂
V (G1) ⊂ ... ⊂ V (Gi), E(G) ⊂ E(G1) ⊂ ... ⊂ E(Gi), i = 1, 2, ..., n.

We determine the natural number ki = N(Gi), i = 1, 2, ..., n by looking
pursuit-evasion game on the edges of these graphs.

Consequently, we obtain the sequence k1, k2, ..., kn. Denote by K =
{k1, k2, ..., kn} this sequence.

Let us give some properties of K.
1. If N(G) = 1, then K = {1, 2, 2, ..., 2}.
2. If N(G) > 1, then min{k1, k2, ..., kn} = 2.
3. k1 = N(G).
4. kn = 2.
5. max{k1, k2, ..., kn} ≤ k1 + 1.
6. ki+1 − ki ∈ {−1, 0, 1}, ki ∈ K, i = 1, 2, ..., n− 1.
7. |{i|ki+1 − ki = −1, ki ∈ K, i = 1, 2, ..., n − 1}| ≤ 1, where |Ω| - the

number of elements of the set Ω.
8. |{i|ki+1 − ki = 1, ki ∈ K, i = 1, 2, ..., n − 1}| = max{k1, k2, ..., kn} −

min{k1, k2, ..., kn},.
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A geometric graph; Dynamic game; The team of pursuers; The evader;
Pursuit-evasion game.
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Let G denote the graph of 1-skeleton of the regular polyhedrons with
icosahedron in Euclidian space R3 [1], [3]. The team of Pursuers P =
{P1, P2, ..., Pm} and one Evader Q moving along play a pursuit-evasion dif-
ferential game. Speed of Q doesn’t exceed 1 while maximal speed of point Pi

equals ρi, ρi ≤ 1, i = 1, 2, ...,m, 1 ≥ ρ1 ≥ ρ2 ≥ ... ≥ ρm > 0. The process of
pursuit-evasion begins from initial positionsP(0) = {P1(0), P2(0), ..., Pm(0)},
Q(0). If one of the players chooses concrete strategy and other chooses ar-
bitrary control function the P(t) = {P1(t), P2(t), ..., Pm(t)}, Q(t), t ≥ 0 then
corresponding trajectories will be generated. The aim of the team of pur-
suers is to reach the equality Pi(T ) = Q(T ) for some i = 1, 2, ...,m, T ≥ 0 for
any initial positions. The aim of evader is opposite, i.e. to hold the condition
Pi(t) = Q(t) for all i = 1, 2, ...,m and t, t ≥ 0 for some initial position (see
[2]-[4]).

Obviously, if m is great enough then the team of Pursuers can win the
game. The least value of m that m Pursuers win the game, will be denoted
by N(G).
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Theorem 1. If ρ1 = 1, ρ2 > 0, ρ3 > 0 then on the Pursuit-Evasion game,
the team of Pursuers wins.

Theorem 2. If ρ1 = 1, ρ2 = 10 then on the Pursuit-Evasion game, the
Evader wins.

Theorem 3. If ρ1 ≥ 2
3 , ρ2 ≥

2
3 , ρ3 ≥

2
3 then on the Pursuit-Evasion

game, the team of Pursuers wins.
Theorem 4. If ρ1 < 1, ρ2 <

1
2 , ρ3 <

1
2 then on the Pursuit-Evasion

game, the Evader wins.

Keywords
The regular polyhedron; Icosahedron; The team of pursuers; The evader;
Pursuit-evasion game.
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Extended abstract 1

The present paper is devoted to a pursuit differential game problem on 1-
skeleton of dodecahedron. Let the group of three pursuers P = {P1, P2, P3}
and one evaderQmove along the edges (1-skeleton) of dodecahedron A1...A5-
C1...C10B1...B5. Without any loss of generality we assume that the lengths
of edges of dodecahedron are equal to 1. It is assumed that each player knows
positions of other players at the present time t. Moreover, pursuers know
the evader’s velocity at the present time t as well. We use Pi(t), i = 1, 2, 3,
and Q(t) to denote the positions of pursuers and evader at the time t.

It is assumed that Pi(0) 6= Q(0), i = 1, 2, 3. We’ll construct strategies for
the pursuers to complete the game for any behavior of the evader. We denote
the maximum speed of evader and i-th pursuer by σ and ρi, respectively.
Without restriction of generality we assume that σ = 1.
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Definition. If there exist strategies of pursuers such that for any control
of evader Pi(τ) = Q(τ) for some i ∈ {1, 2, 3} and τ > 0, then we say that
the group of pursuers wins the game.

The following statement is the main result of the paper.
Theorem. If 2

3 ≤ ρ1 ≤ 1, 2
3 ≤ ρ2 ≤ 1, and ρ3 > 0, then the group of

pursuers P wins the game. Moreover, the game is completed by the time 25
2ρ3

.

There are many articles, devoted to pursuit and evasion differential game
problems on the edge graph of polyhedron (see, for example, [1 − 4]). In
the present paper, a pursuit differential game problem on the 1-skeleton of
dodecahedron is studied for the first time when the speeds of pursuers are
less than that of the evader.
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Pursuit differential game; evader; pursuer; dodecahedron; strategy.
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1

Let T = [0, t∗]. The behavior of a system controlled by two players (partici-
pants), is described by the di�erential equation [1,2]:

ẋ = Ax+ bu+ dv, x(0) = x0, (1)

where x = x(t) = (x1(t), x2(t), ..., xn(t))
′ is the state vector of system at the

current time t; u and v are the control parameters of the �rst and second
players, respectively, at the time t; A is an n × n matrix, b, d, x0 are given
n-vectors.

Piecewise constant function u(·) = (u(t), t ∈ T ) being continuous from
the right and satisfying the inequalities f∗ ≤ u(t) ≤ f∗, t ∈ T , is called the
control of the �rst player, where f∗, f

∗ are given numbers.
Impulse function [2] v(·) = (v(t), t ∈ T ) with set of quantization

τ = {t1, t2, ..., tl}, 0 = t1 < t2 < ... < tl < tl+1 = t∗ (l ≥ m),

satisfying the inequalities g∗(t) ≤ v(t) ≤ g∗(t), t ∈ T , is called the control of
the second player, where g∗(t), g

∗(t), t ∈ T , are given impulse functions with
the set quantization τ , and t∗ is a given positive number.

According to the theory of di�erential equations, for each pair {u(·), v(·)}
of the players' controls, there corresponds the only continuous solution x(·) =
(x(t), t ∈ T ) of equation (1), the trajectory of the dynamic systems.
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Let H, g, and c be given m×n constant matrix, m vector, and n vector,
respectively, U, V be the sets of control functions of the �rst and second play-
ers, respectively. The terminal set and the objective functional are de�ned
respectively by equations

M = {x ∈ Rn | Hx = g}, J(u(·), v(·)) = c′x(t∗).

Consider the following game problem. The �rst player chooses a control
u(·) = (u(t), t ∈ T ), f∗ ≤ u(t) ≤ f∗, t ∈ T , and then knowing this control
the second player chooses a control v(·) = (v(t), t ∈ T ), g∗(t) ≤ v(t) ≤ g∗(t),
t ∈ T .

The goal of the �rst player is not to bring the trajectory of system (1)
into the set M at the time t∗ by selecting a control u0(·) = (u0(t), t ∈ T ),
if this possible, else to maximize the functional minv(·)∈V J(u(·), v(·)). The
goal of the second player is to bring the trajectory of system (1) from the
point x0 to the set M at t∗ by choosing a control v0(·) = (v0(t), t ∈ T ) and
minimize the functional J(u(·), v(·)).

In the present paper, following [3] this problem has been investigated by
using the method of special nonsmooth problem optimization.

Using the connection between these problems an algorithm has been de-
veloped for solving the stated problem. The algorithm is based on comparing
the values of special controls of players in the dual problem to the special
nonsmooth optimization problem.
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Extended abstract 1

Pursuit and evasion differential games are studied on 1-skeleton Σd of the
regular simplex of dimension d, which is defined as a subset of the Euclidean
space Rd by the following relations∑

zj =
1√
2
, zj ≥ 0, j = 1, 2, ..., d+ 1.

Its edges of length 1 form a complete graph Σd with d+ 1 vertices. Let the
group of n pursuers and one evader move on Σd according to the following
equations

ẋi = ui, xi(0) = xi0, i = 1, 2, ..., n, (1)
ẏ = v, y(0) = y0, (2)
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where xi, y, xi0, y0 ∈ Σd, ui, v ∈ Rd, xi(t) and y(t) are the states, and ui, v
are control parameters of ith pursuer and evader, respectively. It is assumed
that |v| ≤ 1, |ui| ≤ ρi, i = 1, 2, ..., n, where ρi < 1, i = 1, 2, ..., n, are given
positive numbers. It is assumed that all the players move only along the
1-skeleton of the regular simplex Σd.

Pursuers use information about the values x1(t), ..., xn(t), y(t) and v(t)
at current time t to construct their strategies. The evader uses information
about x1(t), ..., xn(t), y(t) to construct his strategy.

Definition 1 If there exist strategies of pursuers such that for any control
of evader xi(τ) = y(τ) for some i ∈ {1, 2, ..., n} and τ > 0, then we say that
pursuit can be completed in the game.

Let 1
2σ ≤ ρi < σ, i = 1, 2, ..., k, and ρi <

1
2σ, i = (k + 1), ..., n for some

integer k ≥ 0.

Theorem 2 If either (i) n = k and n+ k > d or (ii) n > k and n+ k ≥ d,
then pursuit can be completed in the game.

Definition 3 If there exists a strategy of evader such that for any control
of pursuers xi(t) 6= y(t) for all i = 1, 2, ..., n, and t > 0, then we say that
evasion is possible in the game.

Theorem 4 If either (i) n = k and n+ k ≤ d or (ii) n > k and n+ k < d,
then evasion is possible.

Keywords
Pursuit differential game; evasion differential game; 1-skeleton of simplex;
strategy.
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Extended abstract 1

In the modern theory of dynamic control systems, methods of multivalued
analysis and the mathematical apparatus of the theory of differential inclu-
sions are widely used [1]. Differential inclusions with a control parameter can
be used to study non-deterministic models of control systems. Methods for
controlling ensembles (bundles) of trajectories of differential inclusions have
effective applications in constructing problem an optimal control that gives
a guaranteed value of the quality criterion [2, 3]. The problems of controlling
bundles of trajectories also arise in dynamic models of conflict situations –
in differential games [4].

Consider a controllable differential inclusion with delays of the form [3]

dx

dt
∈ A(t)x+

k∑
i=1

Ai(t)x(t− hi) + b(t, u), (1)

where t ∈ [t0, t1], x(t) = φ0(t), t ∈ [t0 −max
i=1,k

hi, t0], u ∈ V.

Let: the elements of n×n -matrices A(t) and Ai(t), i = 1, k are summable
on T = [t0, t1]; multivalued mapping (t, u) → b(t, u) ∈ Rn with convex
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compact values, measurable by t ∈ T ; support function C(b(t, u), ψ) convex
by u ∈ V ; ∥b(t, u)∥ ≤ β(t), β(·) ∈ L1(T ); V - is a convex compact Rm;
φ0(·) ∈ Cn(T0). Then: the set of admissible controls U(T ), consisting of
all measurable functions u = u(t) ∈ V, t ∈ T , is weakly compact in Lm

2 (T );
the set of absolutely continuous on T trajectories of system (1) H(u, φ0)
is a non-empty compact set in Cn(T1); the ensemble of trajectories t →
X(t, u, φ0) = {ξ ∈ Rn : ξ = x(t), x(·) ∈ H(u, φ0)} , t ∈ T is a continuous
multivalued mapping whose values are convex compact sets in Rn, and the
support function C(X(t, u, φ0), ψ) is convex by u(·) ∈ U(T ).

Consider the problem of terminal control of an ensemble of trajectories
of system (1):

C(X(t1, u, φ0), l0) → min, C(X(t1, u, φ0), li) ≤ qi, i = 1, k, u(·) ∈ U(T ).
(2)

Definition. Problem (2) is called regular if there exists ũ(·) ∈ U(T )
such that C(X(t1, ũ, φ0), li) < qi, i = 1, k.

Theorem. Let problem (2) is regular. Then for the optimality of u∗(·) ∈
U(T ) it is necessary and sufficient the existence of λ∗ = (λ∗1, ..., λ

∗
k), λ

∗
i ≥

0, i = 1, k such that the pair {u∗(·), λ∗} constitutes the saddle point of the
Lagrange functional

L(u(·), λ) = C(X(t1, u, φ0), l0) +

k∑
i=1

λi(C(X(t1, u, φ0), li)− qi).

Necessary and sufficient optimality conditions of the following form were
obtained from this theorem for the regular problem (2)

min
v∈V

[C(b(t, v), ψ0(t)) +

k∑
i=1

C(b(t, v), ψ∗
i (t))] =

= C(b(t, u∗(t)), ψ0(t)) +

k∑
i=1

C(b(t, u∗(t)), ψ∗
i (t)), t ∈ T, (3)

where ψ0(t) = ψ(t, l0), ψ∗
i (t) = ψ(t, λ∗i li), function ψ(t, l) is the solution of

the system:

ψ̇ = −A′(t)ψ(t)−
k∑

i=1

A′
i(t+ hi)ψ(t+ hi), ψ(t1) = l. (4)

It follows from the obtained result that in order to construct optimal
control in the considered problem, one should first find a solution to the

2



system (4) and then solve a parameterized finite-dimensional optimization
problem (3).

Keywords
differential inclusion; ensemble of trajectories; optimal control; terminal con-
trol.
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Extended abstract 1

We study a differential game for the following system

ẋi = −αixi − βiyi + ui1 − vi1, xi(0) = xi0,
ẏi = βixi − αiyi + ui2 − vi2, yi(0) = yi0,

(1)

in Hilbert space l2, where αi, βi are real numbers, αi ≥ 0, (x10, x20, . . .),
(y10, y20, . . .) ∈ l2, u = (u1, u2, ...) with ui = (ui1, ui2) and v = (v1, v2, ...)
with vi = (vi1, vi2), i = 1, 2, ..., are pursuer’s and evader’s control parameters.
We assume that 0 ≤ t ≤ T , where T is a sufficiently large number, and
z0 = (x10, y10, x20, y20, . . .) 6= 0.

Let ρ and σ be given positive numbers. An admissible control of pursuer
(evader) is a function u(t) = (u1(t), u2(t), . . .) (v(t) = (v1(t), v2(t), . . .)),
t ∈ [0, T ], whose coordinates ui(t) (vi(t)) are measurable and satisfy the
condition

∞∑
i=1

(u2i1(t) + u2i2(t)) ≤ ρ2,
( ∞∑
i=1

(v2i1(t) + v2i2(t)) ≤ σ2
)
, 0 ≤ t ≤ T.
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Let ρ > σ, zi(t) = (xi(t), yi(t)), zi0 = (xi0, yi0). We call a number
θ a guaranteed pursuit time if for some strategy of pursuer and for any
admissible control of the evader, z(t′) = 0 at some t′, 0 ≤ t′ ≤ θ, where
z(t) = (z1(t), z2(t), . . .) is the solution of the initial value problem (1). The
pursuer is interested in minimizing the guaranteed pursuit time.

A number τ is called a guaranteed evasion time if for any number τ ′,
0 ≤ τ ′ < τ , we can construct an admissible control for the evader such that
for any admissible control of the pursuer, we have z(t) 6= 0 for all 0 ≤ t ≤ τ ′
and i = 1, 2, . . .. The evader is interested in minimizing the guaranteed
evasion time. Problem is to find an equation for a guaranteed pursuit time
and a guaranteed evasion time in the game (1).

Theorem 1. For the initial state z0 = (z10, z20, · · ·), the number θ that
satisfy the equation∑

αi>0

α2
i |zi0|2

sinh2(αiθ)
+

1

θ2

∑
αi=0

|zi0|2 = (ρ− σ)2

is a guaranteed pursuit time in the game (1).

Theorem 2. For the initial state z0 = (z10, z20, · · ·), the number

τ = sup
i
τi, τi =

{
1
αi

ln
(
αi|zi0|
ρ−σ + 1

)
, αi > 0

|zi0|
ρ−σ , αi = 0

is a guaranteed evasion time in game (1).

Keywords
Differential game, pursuit, control, strategy, infinite system of differential
equations, geometric constraint.
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Extended abstract 1

The recent pandemic of COVID-19 that spread all over the world has put
Governments at hard testing, because they have to manage a global health
crisis with dramatic effects on both human lives and economies. In this re-
search, we modify a classical SIR model to better adapt to the dynamics
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of the COVID-19. We propose the heterogeneous SQAIRD model where
COVID-19 spreads over a population of economic agents, namely: the el-
derly, adults and young people. Within each demographic group, the popu-
lation is divided in five subgroups: Susceptible (S), Quarantined (Q), Asymp-
tomatic (A), Infected (I), Recovered (R), and Dead (D). The group of Sus-
ceptibles are those who are exposed to the virus. The group indicated by
Q is the group Quarantined (i.e. isolated at home), by law or by their will.
The group Asymptomatic is a group of people who caught the virus, but
did not show evident symptoms. These people can behave like a susceptible
but they can infect other people as well. Then they can either recover (then
shift into the group of Recovered) or develop symptoms, then shifting in the
group of Infected with symptoms. An Infected, instead, can either recover
and shift into Recovered group or die (then shift into the Dead group). Once
a person shift into the Recovered or Dead groups, it cannot be infected any-
more (we assume that a person that recovers, develops immunity and cannot
be reinfected). We design and simulate an optimal control problem faced by
a Government, where its objective is to minimize the costs generated by
the pandemics using as control a compulsory quarantine measure (that is,
a lockdown). We first analyze the problem from a theoretical perspective,
claiming that different lockdown policies (total lockdown, no lockdown or
partial lockdown) may justified by different cost structures of the economies.
We analyze a particular cost structure (convex costs) and simulate a tar-
geted optimal policy vs. a uniform optimal policy, by dividing the whole
population in three demographic groups (young, adults and old). We also
simulate the dynamic of the pandemic with no policy implemented.

Keywords
Epidemic process; SIR model; Quarantine; Optimal control.
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Extended abstract 1

Nowadays, epidemic modelling provides an appropriate tool for describing
the propagation of biological viruses in human or animal populations, in-
formation in social networks and malicious software in computer or ad hoc
networks. The current study represents a hierarchical epidemic model that
describes the propagation of a pathogen in the clustered human popula-
tion. Estimation of Novel coronavirus spreading worldwide leads to the idea
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of the hierarchical structure of the epidemic process. Thus, the propaga-
tion process is divided into several clusters. On each cluster, the pathogen
propagation process is based on the Susceptible-Exposed-Infected-Recovered
(SEIR) model. We formulate the modified model of transmission of the in-
fected individuals between the clusters. The control of pathogen spreading
can be seen as an optimal control problem where a tradeoff exists between
the cost of active virus propagation and the design of the appropriate quar-
antine or pharmaceutical measures. Its network defines each cluster in the
hierarchical system.

We estimate the effectiveness of protection measures within clusters and
between clusters of the population. Intralevel control is defined by increasing
the proportion of the population in a Quarantine and increasing the effec-
tiveness of the treatment of infected agents. In contrast, inter-level control
impacts the intensity of migration rate between clusters. Thus, we compare
pharmaceutical interventions with several types of non-pharmaceutical ones.
By series of numerical experiments, we demonstrate the network structure’s
influence on the interaction between clusters and inside clusters in a hierar-
chical epidemic model. The series of numerical experiments are corroborated
the obtained results.
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Extended abstract 1

In the present work, a simple motion pursuit-evasion differential game of one
pursuer and one evader is studied. The strategies of players are constructed
and solvability conditions of the pursuit-evasion game are given.

We propose a new set of controls of pursuer and evader described by
generalized Grönwall type constraints

|u(t)| ≤ ρ0 + ρ1t+ k

t∫
0

|u(s)|ds, a.e. t ≥ 0,

|v(t)| ≤ σ0 + σ1t+ k

t∫
0

|v(s)|ds, a.e. t ≥ 0,
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respectively, where ρ0>0, σ0 > 0, ρ1 > 0, σ1 > 0, k ≥ 0.
Let dynamics of pursuer P and evader E be described by the equations

P: ẋ = u, x(0) = x0,

E: ẏ = v, y(0) = y0,

where x, y, x0, y0, u, v ∈ Rn, n ≥ 1, x0 6= y0.
The aim of the pursuer is capture, i.e., to reach x(t) = y(t) and the

evader struggles to avoid an encounter, i.e., to achieve x(t) 6= y(t) for all
t ≥ 0, and in the opposite case, to postpone the instant of encounter as long
as possible.

Definition 1. If δ0 ≥ 0, δ1 ≥ 0, then the function

uGr(t, v) = v − λGr(t, v)ξ0 (1)

is called a ΠGr-strategy of the pursuer in the pursuit game, where λGr(t, v) =
〈v, ξ0〉 +

√
〈v, ξ0〉2 + ϕ2(t)− |v|2, ξ0 = z0/|z0|, δ0 = ρ0 − σ0, δ1 = ρ1 − σ1,

ϕ(t) = ρ1
k (ekt − 1) + ρ0e

kt, ϕ(0) = ρ0.
Proposition 1. Assume that δ0 ≥ 0, δ1 > 0 or δ0 > 0, δ1 ≥ 0. Then

there exists at least one positive root of the equation

ekt = At+B (2)

with respect to t, where A = kδ1
δ1+kδ0

, B = 1 + k2|z0|
δ1+kδ0

. The smallest root of
equation (2) is called call a guaranteed pursuit time and denoted by TGr.

Theorem 1. Let Proposition 1 is valid. Then the strategy (1) guarantees
completion of pursuit on the time interval [0, TGr].

To solve the evasion problem we will propose a strategy of the evader.
Definition 2. We call a strategy of the evader control function

vGr(t) = −ψ(t)ξ0, t ≥ 0. (3)

where ψ(t) = σ1
k (ekt − 1) + σ0e

kt, ψ(0) = σ0.
Theorem 2. If δ0 ≤ 0, δ1 ≤ 0, then the strategy (3) is winning for the

evader in the evasion game.
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Differential game; pursuit; evasion; Grönwall type constraint; strategy.
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Extended abstract 1

In this work, it is studied the problem of R.Isaacs called "Life line" game in
Rn. Here pursuit problem will be solved by parallel pursuit strategy.

Let dynamics of the players be described by the equations

P: ẍ− aẋ = u, x(0) = x0, ẋ(0) = x1, |u(t)| ≤ α a.e. t ≥ 0,

E: ÿ − aẏ = v, y(0) = y0, ẏ(0) = y1, |v(t)| ≤ β a.e. t ≥ 0,

where x, y, u, v ∈ Rn, n ≥ 2, a 6= 0, x0 6= y0, x1 = y1, α > 0, β ≥ 0.
P aims to catch E i.e. to realize x(t) = y(t) for some t > 0, while E

stays in the zone Rn \M. The aim of E is to reach the zone M before being
caught by P or to keep x(t) 6= y(t) for all t, t ≥ 0. Notice that M doesn’t
restrict motion of P and y0 6∈M.
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Let z = x− y, z0 = x0 − y0.
Definition 1. If α ≥ β for all t ≥ 0, then the function

u(z0, v) = v − λ(z0, v)ξ0,

is called ΠG-strategy for P , where λ(z0, v) = 〈v, ξ0〉+
√
〈v, ξ0〉2 + α2 − |v|2,

ξ0 = z0/|z0|.
Definition 2. The smallest positive root of the equation eat = at+1+ a2|z0|

α−β
is called a guaranteed pursuit time and denoted by T .
Theorem 1. a) Let α > β. Then ΠG-strategy is winning for P on time in-
terval [0, T ]; b) If α ≤ β, then for any control of P , the strategy v(t) = −βξ0
is winning for E i.e. |z(t)| ≥ |z0| on time interval [0,∞).

Let α > β, ϕ(t) = 1
a(eat−1). Then for the pair (x(t), y(t))) we construct

the set

W (t) = W (x(t), y(t)) = {w : β|w − x(t)| ≥ α|w − y(t)|} ,

W (0) = W (x0, y0) = {w : β|w − x0| ≥ α|w − y0|} .

It is clear that y(t) ∈W (t) for all t ∈ [0, T ].
Theorem 2. The multi-valued mappingW (t)−ϕ(t)x1 is monotone decreas-
ing in t, t ∈ [0, T ], i.e. W (t1)−ϕ(t1)x1 ⊃W (t2)−ϕ(t2)x1 when 0 ≤ t1 ≤ t2
for any t1, t2 ∈ [0, T ].
Theorem 3. If WP

⋂
M = ∅, then the ΠG-strategy is winning for P , where

WP = {W (0) + ϕ(t)x1 : t ∈ [0, T ]}.
Theorem 4. If WE

⋂
M 6= ∅, then there exists some control of E which is

winning, where

WE =

{
ω̃ : ω̃ = ϕ(τ)x1 +

β(ω − y0)
a|ω − y0|

(ϕ(τ)− τ) + y0, y(τ) = ω̃, ω ∈W (0)

}
.
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Extended abstract
1

Many works have been devoted to pursuit-evasion games [1, 2, 3]. In this
talk we study a pursuit-evasion di�erential game with a group of pursuers
and a single evader. The control functions of all pursuers and the evader
satisfy the integral constraints. The farness between the evader and the
closest pursuer when the game is �nished is the payo� function of the game.
We introduce the value of the game and identify optimal strategies of the
pursuers to complete the game. In this game there is no relation between
the energy resource of any pursuer and that of the evader.
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Representation of the solution of one dynamical system on the plane 

 

Qushaqov H. 

 

Abstract. In this paper, we consider a system of second-order nonlinear 

differential equations with a special right-hand side, exactly, the linear part and a 

third-order polynomial of a special form. It is shown that for some relations between 

the parameters there is a second-order curve which trajectories leaving the points of 

this curve remain in the same place. Thus, the curve is invariant respect to the given 

system. Moreover, this system is invariant under a non-degenerate linear 

transformation of variables. We prove that the form of this curve depends on the 

relations between the parameters and the eigenvalues of the matrix.  

Keywords. Dynamic system, ellipse, hyperbola, Hess system, polar 

coordinate system. 

Let the dynamic system have the form  

       𝑥̇ = 𝐴𝑥 + (𝑎 ∙ 𝑥)𝑥 + (𝑥𝑇𝐵𝑥)𝑥,    𝑥 = (𝑥1, … , 𝑥𝑛)𝑇 ∈ 𝑅𝑛,                 (1) 

                                                       𝑥(0) = 𝑥0,                                             (2) 

 

where the A, B-constant matrices order  𝑛 × 𝑛 . 

The family of system (1) is invariant relatively linear transformations of the 

form  

 𝑥 = 𝐿𝑦 
 

where the L-non-degenerate matrix of dimension 𝑛 × 𝑛  

Actually,  

𝐿𝑦̇ = 𝐴𝐿𝑦 + (𝑎 ∙ 𝐿𝑦)𝐿𝑦 + (𝐿𝑦)𝑇𝐵𝐿𝑦𝐿𝑦, 

𝑦̇ = 𝐿−1𝐴𝐿𝑦 + (𝐿𝑇𝑎 ∙ 𝑦)𝐿−1𝐿𝑦 + 𝐿−1(𝐿𝑦)𝑇𝐵𝐿𝑦 ∙ 𝐿𝑦, 

𝑦̇ = 𝐿−1𝐴𝐿𝑦 + (𝐿𝑇𝑎 ∙ 𝑦)𝑦 + (𝐿𝑦)𝑇𝐵𝐿𝑦 ∙ 𝐿−1𝐿𝑦, 

And finally we get  

𝑦̇ = 𝐿−1𝐴𝐿𝑦 + (𝐿𝑇𝑎 ∙ 𝑦)𝑦 + 𝑦𝑇𝐿𝑇𝐵𝐿𝑦 ∙ 𝑦 

 It should be noted that, the class of system (1) has a more property of 

invariance, if the 𝑥̅ −  singular point, we again obtain a system of the form (1), when 

transferring the origin  𝑥̅ − to the point 𝑥 = = 𝑦 + 𝑥̅. Specifically,  

𝑦̇ = 𝐴̃𝑦 + (𝑎̃𝑦)𝑦 + (𝑦𝑇𝐵𝑦)𝑦, 𝑦 = (𝑦1, 𝑦2)𝑇 ∈ 𝑅2, 



where the  𝐴̃ = 𝐴 + 𝑥̅ ⊗ 𝑎 + (𝑎, 𝑥̅)𝐸𝐴̃𝑦 + (𝑎̃𝑦) + 𝑥̅𝑇𝐵𝑥̅𝐸 + 𝑥̅ ⊗ 𝑥̅𝑇𝐵 + 

+𝑥̅ ⊗ 𝑥̅𝑇𝐵𝑇 ,   (𝑎̃𝑦) = (𝑎𝑦) + 𝑥̅𝑇𝐵𝑦 + 𝑥̅𝑇𝐵𝑇𝑦 + 𝑥̅ ⊗ 𝐵𝑇𝑦 

 

In the work (1) obviously indicated solution of tasks (1) and (2), which are 

used in the further.  

Note that for B=0, the system (1) is called the Hess system, which was 

completely investigated in (2).  

In these paper, we consider a problem of the following form  

𝑥̇1 = 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑥1(𝑎0𝑥1
2 + 𝑎1𝑥1𝑥2 + 𝑎2𝑥2

2) 

𝑥̇2 = 𝑎21𝑥1 + 𝑎22𝑥2 + 𝑥2(𝑎0𝑥1
2 + 𝑎1𝑥1𝑥2 + 𝑎2𝑥2

2)                     (3) 

𝑥(0) = (𝑥10, 𝑥20)𝑇 , 

                                                                                           

where the  𝑎𝑖𝑗 , 𝑎0, 𝑎1, 𝑎2, 𝑥10, 𝑥20 -real numbers.  

Since the pattern of trajectories of system (3) of the eigenvalues of matrix A, 

and we distinguish the following cases:  

1. Eigenvalues are real and different;  

2. Eigenvalues are twice repeated;  

3. Eigenvalues with non-zero real parts;  

4. Eigenvalues are purely imaginary complex.  

We proceed to the study of the above cases.  

1. As it is known in (3), there exists a nonsingular matrix P, such as  

𝑃𝐴𝑃−1 = (
𝜆1 0
0 𝜆2

). 

 

First of all, we consider the case 𝜆1 ∙ 𝜆2 ≠ 0, 𝜆1 ≠ 𝜆2. Perform the following 

transformation of system (3)  

𝑦 = 𝑃𝑥 

Then we get the canonic form (3)  

𝑦̇1 = 𝜆1𝑦1 + 𝑦1(𝑏0𝑦1
2 + 𝑏1𝑦1𝑦2 + 𝑏2𝑦2

2) 

                           𝑦̇2 = 𝜆2𝑦2 + 𝑦2(𝑏0𝑦1
2 + 𝑏1𝑦1𝑦2 + 𝑏2𝑦2

2)                         (4) 

𝑦(0) = (𝑦10, 𝑦20). 



Obviously, the fundamental matrix of the linear part of the system (4) has 

the form   

𝑒𝑡𝐶 = (𝑒𝜆1𝑡 0
0 𝑒𝜆2𝑡

). 

Using the results of work (1), after simple calculations we obtain a solution 

to task (4) in the following form:  

𝑦1(𝑡) =
𝑦10𝑒𝜆1𝑡

√1 +
𝑏0

𝜆1
𝑦10

2 +
2𝑏1

𝜆1 + 𝜆2
𝑦10𝑦20 +

𝑏2

𝜆2
𝑦20

2 − 𝐵

 

(5) 

𝑦2(𝑡) =
𝑦20𝑒𝜆2𝑡

√1 +
𝑏0

𝜆1
𝑦10

2 +
2𝑏1

𝜆1 + 𝜆2
𝑦10𝑦20 +

𝑏2

𝜆2
𝑦20

2 − 𝐵

 

 

where the    𝐵 = (
𝑏0

𝜆1
𝑦10

2 𝑒2𝜆1𝑡 +
2𝑏1

𝜆1+𝜆2
𝑦10𝑦20𝑒(𝜆1+𝜆2)𝑡 +

𝑏2

𝜆2
𝑦20

2 𝑒2𝜆2𝑡)  

Consider the following equations:  

    1 +
𝑏0

𝜆1
𝑦1

2 +
2𝑏1

𝜆1 + 𝜆2
𝑦1𝑦2 +

𝑏2

𝜆2
𝑦2

2 = 0                             (6) 

In the polar coordinate system (𝜌, 𝜑)of equation (6) is written as  

  𝜌 = √
−2

𝑏0

𝜆1
+

𝑏2

𝜆2
− 𝑅𝑐𝑜𝑠(2𝜑 + 𝜑0)

 ,                                  (7) 

 where the 𝑅 = √(
𝑏0

𝜆1
−

𝑏2

𝜆2
)

2
+ (

𝑏1

𝜆1+𝜆2
)

2
.  

By the direct substitution, we can verify that if the initial point (𝑦10, 𝑦20)  

satisfies equation (6), then the corresponding solution  (5) also satisfies equation (6). Therefore, by 

the form of equations (6), (7) we can also derive the following statements:  

a) If   |
𝑏0

𝜆1
+

𝑏2

𝜆2
| < 𝑅 the equation (6) represents hyperbole;  

b) If   
𝑏0

𝜆1
+

𝑏2

𝜆2
< 0 and 𝑅 < |

𝑏0

𝜆1
+

𝑏2

𝜆2
| , the equation (6) represents ellipse;  

c) If   
𝑏0

𝜆1
+

𝑏2

𝜆2
< 0 and 𝑅 = |

𝑏0

𝜆1
+

𝑏2

𝜆2
| , the (6) represents two parallel straights;  

d) If   𝑅 ≤
𝑏0

𝜆1
+

𝑏2

𝜆2
 ,  has no solution.  
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Extended abstract 1

In this talk we will examine the consequences of including distributed delays
in an energy model. In particular, we will present a model that has been
developed starting from C.L. Dalgaard and H. Strulik’s model [3], a mathe-
matical model of an economy viewed as a transport network for energy. The
new model has been developed by C. Bianca et al. [1], modifying the model
by C.L. Dalgaard and H. Strulik [3] with the assumption that the energy
conservation formula would be influenced by a time delay; they have showed
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that the dynamics of the system is characterized by a delay differential equa-
tion. The stability behaviour of the resulting equilibrium for our dynamic
system is analyzed including models with Dirac, weak and strong kernels.
Applying the Hopf bifurcation theorem we will determine conditions under
which limit cycle motion is born in such models. The results indicate that
distributed delays have an ambivalent impact on the dynamical behaviour of
systems, either stabilizing or destabilizing them. Afterwards, based on V.I.
Yukalov et al. [5], C. Bianca et al. [2] have adapted their ideas and pro-
posed a generalization by introducing a logistic-type equation for population
with delayed carrying capacity. In their study they have analyzed the conse-
quences of replacing time delays with distributed time delays. C. Bianca et
al. [2] have showed that the destructive impact of the agents on the carrying
capacity leads the system dynamic behaviour to exhibit stability switches
and Hopf bifurcations to occur. Now we will organize a new proposal in this
direction.
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Bifurcation; Energy; Network; Delayed Carrying Capacity.
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Extended abstract

The aim of this work is to examine the publications of international co-
authors belonging to some Eastern European Countries between 1994 and
2018. In this context, we want to examine whether the association with the
European Union, as countries members or associates, favored Eastern Euro-
pean countries (referred to as East-E) by comparing all publications of these
countries with those of EU members. This research question tentatively ex-
poses the advantages in publishing under European Union schemes by the
type of a�liation to the European Union itself. To do so, it identi�es three
subregions a priori: members of the European Union (East-EU); being an
a�liated country to EU research schemes (East-AC); or neither (East-Ext).
This is tested at di�erent levels: number of publications (articles co-authored
with at least one East-E presence); centrality of a given country in the global
network of collaborations. The �ndings show that to be EU member or as-
sociated countries does play a positive role, although national di�erences
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within these di�erent types of a�liation are more relevant than those be-
tween the three sub-regions. Findings suggest further research directed at
understanding national policies concerning research, and how the European
Union might consider its contribution in the wider European Research Area.
These �ndings also suggest further research concerning the future of Eastern
Europe, especially in a possible scenario of �two-speeds integration� of the
European Union and the European Research Area.

Keywords

Social Network Analysis, International Collaborations, Western Balkans and
EU, Substitution E�ect.
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In this paper the dynamic game of catching a point moving on the geo-
metric (conjugate) graph (with rectifiable edges) in space Rd is considered.
Suppose that the graph is connected and n and l are the numbers of its
vertices and edges, respectively, the length of all edges equals to 1. The
game involves two players moving on the edges of the graph: P - the team
of pursuers controlling the movement of points P1, P2, ..., Pm and Q - the
evader controlling the point [1], [5], [6]. The maximum speed off all players
is equal to 1.

Further, we determine the natural numberN(G) [2], [3], [4]. The smallest
of the numbers m that P wins in the game is denoted by N(G). If G is the
free, then N(G) = 1, if the graph has at least one cycle, then N(G) ≥ 2. It
is obvious that N(G) is exist and N(G) ≤ n− 1.

Now, we take the point A ∈ Rd that does not belong to the graph and
connect this point with some vertex of the graph G. By connecting the point
A with the vertices of the graph G, we will obtain the a geometric graph G1

with n+ 1 vertices and l+ 1 edges, and having the properly V (G) ⊂ V (G1),
E(G) ⊂ E(G1). Assume that the length of the edge coming out of the point
A is equal to 1.

We determine the natural number k1 = N(G1) by looking at a game
involving P - a team of pursuers and the evader Q along the edges of the
graph G1.

Similarly, by connecting the point A with vertices of the graph G1, we
will create a geometric graph G2 with the number of vertices n + 1, the
number of edges l + 2. And, it holds: V (G) ⊂ V (G1) ⊂ V (G2), E(G) ⊂
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E(G1) ⊂ E(G2).
We determine the natural number k2 = N(G2) by looking pursuit-evasion

game on the edges of the graph G2.
Continuing this process, we will create a geometric graph Gi with the

number of vertices n + 1, the number of edges l + i. And, it holds: V (G) ⊂
V (G1) ⊂ ... ⊂ V (Gi), E(G) ⊂ E(G1) ⊂ ... ⊂ E(Gi), i = 1, 2, ..., n.

We determine the natural number ki = N(Gi), i = 1, 2, ..., n by looking
pursuit-evasion game on the edges of these graphs.

Consequently, we obtain the sequence k1, k2, ..., kn. Denote by K =
{k1, k2, ..., kn} this sequence.

Let us give some properties of K.
1. If N(G) = 1, then K = {1, 2, 2, ..., 2}.
2. If N(G) > 1, then min{k1, k2, ..., kn} = 2.
3. k1 = N(G).
4. kn = 2.
5. max{k1, k2, ..., kn} ≤ k1 + 1.
6. ki+1 − ki ∈ {−1, 0, 1}, ki ∈ K, i = 1, 2, ..., n− 1.
7. |{i|ki+1 − ki = −1, ki ∈ K, i = 1, 2, ..., n − 1}| ≤ 1, where |Ω| - the

number of elements of the set Ω.
8. |{i|ki+1 − ki = 1, ki ∈ K, i = 1, 2, ..., n − 1}| = max{k1, k2, ..., kn} −

min{k1, k2, ..., kn},.

Keywords
A geometric graph; Dynamic game; The team of pursuers; The evader;
Pursuit-evasion game.
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Let G denote the graph of 1-skeleton of the regular polyhedrons with
icosahedron in Euclidian space R3 [1], [3]. The team of Pursuers P =
{P1, P2, ..., Pm} and one Evader Q moving along play a pursuit-evasion dif-
ferential game. Speed of Q doesn’t exceed 1 while maximal speed of point Pi

equals ρi, ρi ≤ 1, i = 1, 2, ...,m, 1 ≥ ρ1 ≥ ρ2 ≥ ... ≥ ρm > 0. The process of
pursuit-evasion begins from initial positionsP(0) = {P1(0), P2(0), ..., Pm(0)},
Q(0). If one of the players chooses concrete strategy and other chooses ar-
bitrary control function the P(t) = {P1(t), P2(t), ..., Pm(t)}, Q(t), t ≥ 0 then
corresponding trajectories will be generated. The aim of the team of pur-
suers is to reach the equality Pi(T ) = Q(T ) for some i = 1, 2, ...,m, T ≥ 0 for
any initial positions. The aim of evader is opposite, i.e. to hold the condition
Pi(t) = Q(t) for all i = 1, 2, ...,m and t, t ≥ 0 for some initial position (see
[2]-[4]).

Obviously, if m is great enough then the team of Pursuers can win the
game. The least value of m that m Pursuers win the game, will be denoted
by N(G).
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Theorem 1. If ρ1 = 1, ρ2 > 0, ρ3 > 0 then on the Pursuit-Evasion game,
the team of Pursuers wins.

Theorem 2. If ρ1 = 1, ρ2 = 10 then on the Pursuit-Evasion game, the
Evader wins.

Theorem 3. If ρ1 ≥ 2
3 , ρ2 ≥

2
3 , ρ3 ≥

2
3 then on the Pursuit-Evasion

game, the team of Pursuers wins.
Theorem 4. If ρ1 < 1, ρ2 <

1
2 , ρ3 <

1
2 then on the Pursuit-Evasion

game, the Evader wins.

Keywords
The regular polyhedron; Icosahedron; The team of pursuers; The evader;
Pursuit-evasion game.
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Extended abstract 1

The present paper is devoted to a pursuit differential game problem on 1-
skeleton of dodecahedron. Let the group of three pursuers P = {P1, P2, P3}
and one evaderQmove along the edges (1-skeleton) of dodecahedron A1...A5-
C1...C10B1...B5. Without any loss of generality we assume that the lengths
of edges of dodecahedron are equal to 1. It is assumed that each player knows
positions of other players at the present time t. Moreover, pursuers know
the evader’s velocity at the present time t as well. We use Pi(t), i = 1, 2, 3,
and Q(t) to denote the positions of pursuers and evader at the time t.

It is assumed that Pi(0) 6= Q(0), i = 1, 2, 3. We’ll construct strategies for
the pursuers to complete the game for any behavior of the evader. We denote
the maximum speed of evader and i-th pursuer by σ and ρi, respectively.
Without restriction of generality we assume that σ = 1.
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Definition. If there exist strategies of pursuers such that for any control
of evader Pi(τ) = Q(τ) for some i ∈ {1, 2, 3} and τ > 0, then we say that
the group of pursuers wins the game.

The following statement is the main result of the paper.
Theorem. If 2

3 ≤ ρ1 ≤ 1, 2
3 ≤ ρ2 ≤ 1, and ρ3 > 0, then the group of

pursuers P wins the game. Moreover, the game is completed by the time 25
2ρ3

.

There are many articles, devoted to pursuit and evasion differential game
problems on the edge graph of polyhedron (see, for example, [1 − 4]). In
the present paper, a pursuit differential game problem on the 1-skeleton of
dodecahedron is studied for the first time when the speeds of pursuers are
less than that of the evader.
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Pursuit differential game; evader; pursuer; dodecahedron; strategy.
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1

Let T = [0, t∗]. The behavior of a system controlled by two players (partici-
pants), is described by the di�erential equation [1,2]:

ẋ = Ax+ bu+ dv, x(0) = x0, (1)

where x = x(t) = (x1(t), x2(t), ..., xn(t))
′ is the state vector of system at the

current time t; u and v are the control parameters of the �rst and second
players, respectively, at the time t; A is an n × n matrix, b, d, x0 are given
n-vectors.

Piecewise constant function u(·) = (u(t), t ∈ T ) being continuous from
the right and satisfying the inequalities f∗ ≤ u(t) ≤ f∗, t ∈ T , is called the
control of the �rst player, where f∗, f

∗ are given numbers.
Impulse function [2] v(·) = (v(t), t ∈ T ) with set of quantization

τ = {t1, t2, ..., tl}, 0 = t1 < t2 < ... < tl < tl+1 = t∗ (l ≥ m),

satisfying the inequalities g∗(t) ≤ v(t) ≤ g∗(t), t ∈ T , is called the control of
the second player, where g∗(t), g

∗(t), t ∈ T , are given impulse functions with
the set quantization τ , and t∗ is a given positive number.

According to the theory of di�erential equations, for each pair {u(·), v(·)}
of the players' controls, there corresponds the only continuous solution x(·) =
(x(t), t ∈ T ) of equation (1), the trajectory of the dynamic systems.
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Let H, g, and c be given m×n constant matrix, m vector, and n vector,
respectively, U, V be the sets of control functions of the �rst and second play-
ers, respectively. The terminal set and the objective functional are de�ned
respectively by equations

M = {x ∈ Rn | Hx = g}, J(u(·), v(·)) = c′x(t∗).

Consider the following game problem. The �rst player chooses a control
u(·) = (u(t), t ∈ T ), f∗ ≤ u(t) ≤ f∗, t ∈ T , and then knowing this control
the second player chooses a control v(·) = (v(t), t ∈ T ), g∗(t) ≤ v(t) ≤ g∗(t),
t ∈ T .

The goal of the �rst player is not to bring the trajectory of system (1)
into the set M at the time t∗ by selecting a control u0(·) = (u0(t), t ∈ T ),
if this possible, else to maximize the functional minv(·)∈V J(u(·), v(·)). The
goal of the second player is to bring the trajectory of system (1) from the
point x0 to the set M at t∗ by choosing a control v0(·) = (v0(t), t ∈ T ) and
minimize the functional J(u(·), v(·)).

In the present paper, following [3] this problem has been investigated by
using the method of special nonsmooth problem optimization.

Using the connection between these problems an algorithm has been de-
veloped for solving the stated problem. The algorithm is based on comparing
the values of special controls of players in the dual problem to the special
nonsmooth optimization problem.
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Extended abstract 1

Pursuit and evasion differential games are studied on 1-skeleton Σd of the
regular simplex of dimension d, which is defined as a subset of the Euclidean
space Rd by the following relations∑

zj =
1√
2
, zj ≥ 0, j = 1, 2, ..., d+ 1.

Its edges of length 1 form a complete graph Σd with d+ 1 vertices. Let the
group of n pursuers and one evader move on Σd according to the following
equations

ẋi = ui, xi(0) = xi0, i = 1, 2, ..., n, (1)
ẏ = v, y(0) = y0, (2)
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where xi, y, xi0, y0 ∈ Σd, ui, v ∈ Rd, xi(t) and y(t) are the states, and ui, v
are control parameters of ith pursuer and evader, respectively. It is assumed
that |v| ≤ 1, |ui| ≤ ρi, i = 1, 2, ..., n, where ρi < 1, i = 1, 2, ..., n, are given
positive numbers. It is assumed that all the players move only along the
1-skeleton of the regular simplex Σd.

Pursuers use information about the values x1(t), ..., xn(t), y(t) and v(t)
at current time t to construct their strategies. The evader uses information
about x1(t), ..., xn(t), y(t) to construct his strategy.

Definition 1 If there exist strategies of pursuers such that for any control
of evader xi(τ) = y(τ) for some i ∈ {1, 2, ..., n} and τ > 0, then we say that
pursuit can be completed in the game.

Let 1
2σ ≤ ρi < σ, i = 1, 2, ..., k, and ρi <

1
2σ, i = (k + 1), ..., n for some

integer k ≥ 0.

Theorem 2 If either (i) n = k and n+ k > d or (ii) n > k and n+ k ≥ d,
then pursuit can be completed in the game.

Definition 3 If there exists a strategy of evader such that for any control
of pursuers xi(t) 6= y(t) for all i = 1, 2, ..., n, and t > 0, then we say that
evasion is possible in the game.

Theorem 4 If either (i) n = k and n+ k ≤ d or (ii) n > k and n+ k < d,
then evasion is possible.

Keywords
Pursuit differential game; evasion differential game; 1-skeleton of simplex;
strategy.
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Extended abstract 1

In the modern theory of dynamic control systems, methods of multivalued
analysis and the mathematical apparatus of the theory of differential inclu-
sions are widely used [1]. Differential inclusions with a control parameter can
be used to study non-deterministic models of control systems. Methods for
controlling ensembles (bundles) of trajectories of differential inclusions have
effective applications in constructing problem an optimal control that gives
a guaranteed value of the quality criterion [2, 3]. The problems of controlling
bundles of trajectories also arise in dynamic models of conflict situations –
in differential games [4].

Consider a controllable differential inclusion with delays of the form [3]

dx

dt
∈ A(t)x+

k∑
i=1

Ai(t)x(t− hi) + b(t, u), (1)

where t ∈ [t0, t1], x(t) = φ0(t), t ∈ [t0 −max
i=1,k

hi, t0], u ∈ V.

Let: the elements of n×n -matrices A(t) and Ai(t), i = 1, k are summable
on T = [t0, t1]; multivalued mapping (t, u) → b(t, u) ∈ Rn with convex
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compact values, measurable by t ∈ T ; support function C(b(t, u), ψ) convex
by u ∈ V ; ∥b(t, u)∥ ≤ β(t), β(·) ∈ L1(T ); V - is a convex compact Rm;
φ0(·) ∈ Cn(T0). Then: the set of admissible controls U(T ), consisting of
all measurable functions u = u(t) ∈ V, t ∈ T , is weakly compact in Lm

2 (T );
the set of absolutely continuous on T trajectories of system (1) H(u, φ0)
is a non-empty compact set in Cn(T1); the ensemble of trajectories t →
X(t, u, φ0) = {ξ ∈ Rn : ξ = x(t), x(·) ∈ H(u, φ0)} , t ∈ T is a continuous
multivalued mapping whose values are convex compact sets in Rn, and the
support function C(X(t, u, φ0), ψ) is convex by u(·) ∈ U(T ).

Consider the problem of terminal control of an ensemble of trajectories
of system (1):

C(X(t1, u, φ0), l0) → min, C(X(t1, u, φ0), li) ≤ qi, i = 1, k, u(·) ∈ U(T ).
(2)

Definition. Problem (2) is called regular if there exists ũ(·) ∈ U(T )
such that C(X(t1, ũ, φ0), li) < qi, i = 1, k.

Theorem. Let problem (2) is regular. Then for the optimality of u∗(·) ∈
U(T ) it is necessary and sufficient the existence of λ∗ = (λ∗1, ..., λ

∗
k), λ

∗
i ≥

0, i = 1, k such that the pair {u∗(·), λ∗} constitutes the saddle point of the
Lagrange functional

L(u(·), λ) = C(X(t1, u, φ0), l0) +

k∑
i=1

λi(C(X(t1, u, φ0), li)− qi).

Necessary and sufficient optimality conditions of the following form were
obtained from this theorem for the regular problem (2)

min
v∈V

[C(b(t, v), ψ0(t)) +

k∑
i=1

C(b(t, v), ψ∗
i (t))] =

= C(b(t, u∗(t)), ψ0(t)) +

k∑
i=1

C(b(t, u∗(t)), ψ∗
i (t)), t ∈ T, (3)

where ψ0(t) = ψ(t, l0), ψ∗
i (t) = ψ(t, λ∗i li), function ψ(t, l) is the solution of

the system:

ψ̇ = −A′(t)ψ(t)−
k∑

i=1

A′
i(t+ hi)ψ(t+ hi), ψ(t1) = l. (4)

It follows from the obtained result that in order to construct optimal
control in the considered problem, one should first find a solution to the

2



system (4) and then solve a parameterized finite-dimensional optimization
problem (3).
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differential inclusion; ensemble of trajectories; optimal control; terminal con-
trol.
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Extended abstract 1

We study a differential game for the following system

ẋi = −αixi − βiyi + ui1 − vi1, xi(0) = xi0,
ẏi = βixi − αiyi + ui2 − vi2, yi(0) = yi0,

(1)

in Hilbert space l2, where αi, βi are real numbers, αi ≥ 0, (x10, x20, . . .),
(y10, y20, . . .) ∈ l2, u = (u1, u2, ...) with ui = (ui1, ui2) and v = (v1, v2, ...)
with vi = (vi1, vi2), i = 1, 2, ..., are pursuer’s and evader’s control parameters.
We assume that 0 ≤ t ≤ T , where T is a sufficiently large number, and
z0 = (x10, y10, x20, y20, . . .) 6= 0.

Let ρ and σ be given positive numbers. An admissible control of pursuer
(evader) is a function u(t) = (u1(t), u2(t), . . .) (v(t) = (v1(t), v2(t), . . .)),
t ∈ [0, T ], whose coordinates ui(t) (vi(t)) are measurable and satisfy the
condition

∞∑
i=1

(u2i1(t) + u2i2(t)) ≤ ρ2,
( ∞∑
i=1

(v2i1(t) + v2i2(t)) ≤ σ2
)
, 0 ≤ t ≤ T.
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Let ρ > σ, zi(t) = (xi(t), yi(t)), zi0 = (xi0, yi0). We call a number
θ a guaranteed pursuit time if for some strategy of pursuer and for any
admissible control of the evader, z(t′) = 0 at some t′, 0 ≤ t′ ≤ θ, where
z(t) = (z1(t), z2(t), . . .) is the solution of the initial value problem (1). The
pursuer is interested in minimizing the guaranteed pursuit time.

A number τ is called a guaranteed evasion time if for any number τ ′,
0 ≤ τ ′ < τ , we can construct an admissible control for the evader such that
for any admissible control of the pursuer, we have z(t) 6= 0 for all 0 ≤ t ≤ τ ′
and i = 1, 2, . . .. The evader is interested in minimizing the guaranteed
evasion time. Problem is to find an equation for a guaranteed pursuit time
and a guaranteed evasion time in the game (1).

Theorem 1. For the initial state z0 = (z10, z20, · · ·), the number θ that
satisfy the equation∑

αi>0

α2
i |zi0|2

sinh2(αiθ)
+

1

θ2

∑
αi=0

|zi0|2 = (ρ− σ)2

is a guaranteed pursuit time in the game (1).

Theorem 2. For the initial state z0 = (z10, z20, · · ·), the number

τ = sup
i
τi, τi =

{
1
αi

ln
(
αi|zi0|
ρ−σ + 1

)
, αi > 0

|zi0|
ρ−σ , αi = 0

is a guaranteed evasion time in game (1).
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Differential game, pursuit, control, strategy, infinite system of differential
equations, geometric constraint.
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Extended abstract 1

The recent pandemic of COVID-19 that spread all over the world has put
Governments at hard testing, because they have to manage a global health
crisis with dramatic effects on both human lives and economies. In this re-
search, we modify a classical SIR model to better adapt to the dynamics
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of the COVID-19. We propose the heterogeneous SQAIRD model where
COVID-19 spreads over a population of economic agents, namely: the el-
derly, adults and young people. Within each demographic group, the popu-
lation is divided in five subgroups: Susceptible (S), Quarantined (Q), Asymp-
tomatic (A), Infected (I), Recovered (R), and Dead (D). The group of Sus-
ceptibles are those who are exposed to the virus. The group indicated by
Q is the group Quarantined (i.e. isolated at home), by law or by their will.
The group Asymptomatic is a group of people who caught the virus, but
did not show evident symptoms. These people can behave like a susceptible
but they can infect other people as well. Then they can either recover (then
shift into the group of Recovered) or develop symptoms, then shifting in the
group of Infected with symptoms. An Infected, instead, can either recover
and shift into Recovered group or die (then shift into the Dead group). Once
a person shift into the Recovered or Dead groups, it cannot be infected any-
more (we assume that a person that recovers, develops immunity and cannot
be reinfected). We design and simulate an optimal control problem faced by
a Government, where its objective is to minimize the costs generated by
the pandemics using as control a compulsory quarantine measure (that is,
a lockdown). We first analyze the problem from a theoretical perspective,
claiming that different lockdown policies (total lockdown, no lockdown or
partial lockdown) may justified by different cost structures of the economies.
We analyze a particular cost structure (convex costs) and simulate a tar-
geted optimal policy vs. a uniform optimal policy, by dividing the whole
population in three demographic groups (young, adults and old). We also
simulate the dynamic of the pandemic with no policy implemented.
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Extended abstract 1

Nowadays, epidemic modelling provides an appropriate tool for describing
the propagation of biological viruses in human or animal populations, in-
formation in social networks and malicious software in computer or ad hoc
networks. The current study represents a hierarchical epidemic model that
describes the propagation of a pathogen in the clustered human popula-
tion. Estimation of Novel coronavirus spreading worldwide leads to the idea
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of the hierarchical structure of the epidemic process. Thus, the propaga-
tion process is divided into several clusters. On each cluster, the pathogen
propagation process is based on the Susceptible-Exposed-Infected-Recovered
(SEIR) model. We formulate the modified model of transmission of the in-
fected individuals between the clusters. The control of pathogen spreading
can be seen as an optimal control problem where a tradeoff exists between
the cost of active virus propagation and the design of the appropriate quar-
antine or pharmaceutical measures. Its network defines each cluster in the
hierarchical system.

We estimate the effectiveness of protection measures within clusters and
between clusters of the population. Intralevel control is defined by increasing
the proportion of the population in a Quarantine and increasing the effec-
tiveness of the treatment of infected agents. In contrast, inter-level control
impacts the intensity of migration rate between clusters. Thus, we compare
pharmaceutical interventions with several types of non-pharmaceutical ones.
By series of numerical experiments, we demonstrate the network structure’s
influence on the interaction between clusters and inside clusters in a hierar-
chical epidemic model. The series of numerical experiments are corroborated
the obtained results.
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Extended abstract 1

In the present work, a simple motion pursuit-evasion differential game of one
pursuer and one evader is studied. The strategies of players are constructed
and solvability conditions of the pursuit-evasion game are given.

We propose a new set of controls of pursuer and evader described by
generalized Grönwall type constraints

|u(t)| ≤ ρ0 + ρ1t+ k

t∫
0

|u(s)|ds, a.e. t ≥ 0,

|v(t)| ≤ σ0 + σ1t+ k

t∫
0

|v(s)|ds, a.e. t ≥ 0,
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respectively, where ρ0>0, σ0 > 0, ρ1 > 0, σ1 > 0, k ≥ 0.
Let dynamics of pursuer P and evader E be described by the equations

P: ẋ = u, x(0) = x0,

E: ẏ = v, y(0) = y0,

where x, y, x0, y0, u, v ∈ Rn, n ≥ 1, x0 6= y0.
The aim of the pursuer is capture, i.e., to reach x(t) = y(t) and the

evader struggles to avoid an encounter, i.e., to achieve x(t) 6= y(t) for all
t ≥ 0, and in the opposite case, to postpone the instant of encounter as long
as possible.

Definition 1. If δ0 ≥ 0, δ1 ≥ 0, then the function

uGr(t, v) = v − λGr(t, v)ξ0 (1)

is called a ΠGr-strategy of the pursuer in the pursuit game, where λGr(t, v) =
〈v, ξ0〉 +

√
〈v, ξ0〉2 + ϕ2(t)− |v|2, ξ0 = z0/|z0|, δ0 = ρ0 − σ0, δ1 = ρ1 − σ1,

ϕ(t) = ρ1
k (ekt − 1) + ρ0e

kt, ϕ(0) = ρ0.
Proposition 1. Assume that δ0 ≥ 0, δ1 > 0 or δ0 > 0, δ1 ≥ 0. Then

there exists at least one positive root of the equation

ekt = At+B (2)

with respect to t, where A = kδ1
δ1+kδ0

, B = 1 + k2|z0|
δ1+kδ0

. The smallest root of
equation (2) is called call a guaranteed pursuit time and denoted by TGr.

Theorem 1. Let Proposition 1 is valid. Then the strategy (1) guarantees
completion of pursuit on the time interval [0, TGr].

To solve the evasion problem we will propose a strategy of the evader.
Definition 2. We call a strategy of the evader control function

vGr(t) = −ψ(t)ξ0, t ≥ 0. (3)

where ψ(t) = σ1
k (ekt − 1) + σ0e

kt, ψ(0) = σ0.
Theorem 2. If δ0 ≤ 0, δ1 ≤ 0, then the strategy (3) is winning for the

evader in the evasion game.
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Extended abstract 1

In this work, it is studied the problem of R.Isaacs called "Life line" game in
Rn. Here pursuit problem will be solved by parallel pursuit strategy.

Let dynamics of the players be described by the equations

P: ẍ− aẋ = u, x(0) = x0, ẋ(0) = x1, |u(t)| ≤ α a.e. t ≥ 0,

E: ÿ − aẏ = v, y(0) = y0, ẏ(0) = y1, |v(t)| ≤ β a.e. t ≥ 0,

where x, y, u, v ∈ Rn, n ≥ 2, a 6= 0, x0 6= y0, x1 = y1, α > 0, β ≥ 0.
P aims to catch E i.e. to realize x(t) = y(t) for some t > 0, while E

stays in the zone Rn \M. The aim of E is to reach the zone M before being
caught by P or to keep x(t) 6= y(t) for all t, t ≥ 0. Notice that M doesn’t
restrict motion of P and y0 6∈M.

1
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Let z = x− y, z0 = x0 − y0.
Definition 1. If α ≥ β for all t ≥ 0, then the function

u(z0, v) = v − λ(z0, v)ξ0,

is called ΠG-strategy for P , where λ(z0, v) = 〈v, ξ0〉+
√
〈v, ξ0〉2 + α2 − |v|2,

ξ0 = z0/|z0|.
Definition 2. The smallest positive root of the equation eat = at+1+ a2|z0|

α−β
is called a guaranteed pursuit time and denoted by T .
Theorem 1. a) Let α > β. Then ΠG-strategy is winning for P on time in-
terval [0, T ]; b) If α ≤ β, then for any control of P , the strategy v(t) = −βξ0
is winning for E i.e. |z(t)| ≥ |z0| on time interval [0,∞).

Let α > β, ϕ(t) = 1
a(eat−1). Then for the pair (x(t), y(t))) we construct

the set

W (t) = W (x(t), y(t)) = {w : β|w − x(t)| ≥ α|w − y(t)|} ,

W (0) = W (x0, y0) = {w : β|w − x0| ≥ α|w − y0|} .

It is clear that y(t) ∈W (t) for all t ∈ [0, T ].
Theorem 2. The multi-valued mappingW (t)−ϕ(t)x1 is monotone decreas-
ing in t, t ∈ [0, T ], i.e. W (t1)−ϕ(t1)x1 ⊃W (t2)−ϕ(t2)x1 when 0 ≤ t1 ≤ t2
for any t1, t2 ∈ [0, T ].
Theorem 3. If WP

⋂
M = ∅, then the ΠG-strategy is winning for P , where

WP = {W (0) + ϕ(t)x1 : t ∈ [0, T ]}.
Theorem 4. If WE

⋂
M 6= ∅, then there exists some control of E which is

winning, where

WE =

{
ω̃ : ω̃ = ϕ(τ)x1 +

β(ω − y0)
a|ω − y0|

(ϕ(τ)− τ) + y0, y(τ) = ω̃, ω ∈W (0)

}
.
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Extended abstract 1

Markets are far from being perfectly elastic and any order or trade causes
prices to move. The relation between trades and price generated by corre-
lation in order flows is known as market impact. In the seminal work of [1]
the market impact is modeled by a constant fixed over time, making market
impact permanent and constant. However, empirical evidence has shown
that the transient impact model (TIM) provides a better way to describe
how past orders influence the price, [2]. The price impact may be attributed
to a stylized statistical fact induced by a mechanical consequence of the or-
der book dynamics. Nevertheless, the origin of TIM is still unclear from a
theoretical point of view. Moreover, the empirical evidence suggests to relate
the transient impact to optimal schedule strategies of agents, [3].

In this work we analyze the relation of TIM and the classical Almgren and
Chriss framework finding a correspondence between these two models in a
simple market setting from an optimal execution inverse problem perspective.

1Speaker: Francesco Cordoni, francesco.cordoni@sns.it.
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We start by deriving the agent Nash equilibria in a suitable market impact
game setting of [4] where two agents liquidate the same asset. Then, we
show how to relate the corresponding Nash equilibrium to the solution of an
equivalent optimal execution problem investigating how the mutual influence
of traders implies the existence of an intrinsic market impact. We found that
the TIM emerges as a result of the interaction between agents in a market
impact game with permanent constant price impact as in the Almgren and
Chriss model.

The transient impact function solves a singular linear problem and we
show that a linear decay kernel solution exists. We discuss how transaction
cost levels of market impact games affect agents’ interaction and the related
decay kernel solutions. We also study the relations accounting for cross-
impact effects and many competitors are present. Finally, we conclude by
presenting an alternative approach based on price dynamics that can be
employed in general model settings, from which we derive a unique nonlinear
solution.
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