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Abstract

In this work we intend to forecast (from 1 to 15 years horizon) the expected value
of financial losses due to natural catastrophes as well as their volatility where the
latter is potentially responsible for dramatic swings of Profit and Loss (P&L) for
those companies affected by unexpected events. To do that, we developed a new
generalized two-factor square-root model that enables us to link together occurrences
and volatility through correlated Brownian motions. In addition, by means of a
Generalized Pareto Distribution (GPD), we forecast the maximum loss in terms
of Value at Risk (VaR) for each type of natural disaster. Finally, the accuracy
of our results is checked by a comparison with four baseline models and validated
by a backtesting analysis. This methodology is primarily designed for insurance
companies that need to avoid erratically reserves but it could be extended to any
firm that is exposed to extreme events and intends to preserve a stable cash flow to
the shareholders.
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1. Introduction

The purpose of the present work is forecasting the financial losses caused by
some natural catastrophes as well as their volatility from short-term (1 year) to
long-term horizon (up to 15 years). In particular, we want to predict the expected
value of the above-mentioned quantities which are of high importance, since it is
their great variability and non-Gaussian behaviour that makes any sophisticated
model fallacious to the point that simple models, such as autoregressive or moving
average, are more successful. Here we propose a new two-factor model where mean
and variance are correlated processes. This is new in literature and it is difficult to
implement, to the point that there are no closed form solutions Brigo and Mercurio
(2006). Based on the model, we are able to calculate an upper bound that follows
a Pareto distribution and represents the VaR for backtesting. This approach is
new in literature as well. Being able to forecast the interaction between losses and
volatility is very important for stabilizing the P&L. The proposed methodology is on
the edge between banking and insurance. It has been expressly designed for insurers
and reinsurers but applies as well to banks and other companies when exposed to
dramatic changes of a given line of business (LOB) due to unexpected events.

To begin with, we denote by Xt the amount of the losses Lt at time t, i.e.,

Xt =
t∑

h=1

Lh.

To measure the variability of a time series of losses, {Xt}, we compute the percentage
change defined as

Xt −Xt−1

Xt−1

.

Natural catastrophes (often abbreviated as NatCat) encompasses property poli-
cies such as earthquake and land slide failure, primary and excess storm and flood
insurance, etc. Table 1 shows the magnitude of those percentage (of order 104) over
five natural disasters with higher impact (the dataset is described in Section 3.1).
Note that volatilities are of order of magnitude between 103 and 104 which makes
complicates any forecasting attempt. Therefore, due to the high variability of time
series and as commonly done in finance, we are going to consider log returns (i.e.
ln (Xt/Xt−1)) only.

Further, in Figure 1 the log returns are plotted for the five chosen natural disas-
ters, whereas Table 2 reports the sample mean and standard deviation of log returns
as well as the skewness and kurtosis of their empirical distribution. Observe that
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Maximum of Loss Returns
Earthquake Storm Flood Drought Ext. Temp.

Perc. change (·104) 1.97% 0.04% 1.01% 0.03% 0.26%
Perc. change of
log returns 3.65% 12.56 22.25% 23.25% 9.72%

Table 1: Maximum of Xt/Xt−1 − 1 and of ln (Xt/Xt−1) due to natural disaster (annual data from
1900 to 2020).

the logarithms showed in Figure 1 are always positive being the amount of losses an
increasing quantity in time. Obviously, it is a different behaviour from the Gaussian
distribution.
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Figure 1: Logarithms of losses due to natural disasters (annual data from 1900 to 2020).

Earthquake Storm Flood Drought Ext. Temp.
Mean 11.50 12.07 11.30 9.08 4.88

Std. Dev. 3.38 5.03 7.01 7.80 5.15
Skewness -0.92 -0.78 -0.49 -0.07 0.81
Kurtosis 3.80 2.57 1.61 1.13 2.23

Table 2: Four indices of log returns empirical distribution (annual data from 1900 to 2020).
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Modeling natural catastrophes evolved in the late 1980s. The Hurricane Andrew
in 1992 and the Northridge earthquake in 1994 put further pressure on companies
to more accurately analyze, write and price natural catastrophe risk. Because of
global warming, frequency and severity of some climate-related events such as flood,
drought, storms, etc. evidenced the limits of catastrophe models as they underesti-
mated the losses. Estimates used to rely on long-term trends but, in the wake of of
the record hurricane seasons and amid predictions of increased storm activity, mod-
elers began to incorporate near-term projections of loss. These near-term models
started to reflect five-year outlooks. However, even those predictions, in some cases,
were not sufficient and new methods were developed to forecast the severity of next
record insured loss to property caused by natural catastrophic events Hsieh (2004).
That is the path we intend to follow.

As detailed in next section, there are many stochastic models able to describe
persistent jumps and high levels of volatility. Over the last years, we have developed
our own methodology Orlando et al. (2018), 2019a, 2019b, 2019c, on which we have
built a new model expressly designed for describing natural disasters. However, due
to the high variability previously illustrated, we decided to adopt a two-factor model.
In this work we intend to show that our model is not only able to predict the average
losses and their volatility but, also, it is able to calculate a proper upper bound. The
latter, in our framework, follows a Pareto distribution and represents our Value at
Risk (VaR).

This paper is organized as follows. Next Section resumes the existing literature
and gives an account of the reasons we have selected the proposed model. Section 3
is about materials, methods and techniques. In there we start by describing the data
source followed by the proposed model. Backtesting analysis for model validation
concludes the Section. Numerical results are illustrated in Section 4. Finally, Section
5 contains the conclusions and the Appendix A contains graphical evidences on the
validity of the proposed model.

2. Literature review and model selection

Natural disasters are complex dynamic systems with, sometimes, disastrous im-
pacts on environment and people. Both frequency of occurrences and severity grow
with time because of climate change and increasing human population. They are
nonlinear and characterized by low correlation and high intermittency Jin et al.
(2008). Typical tools for time series analysis are not of easy application because of
discontinuity and different cycles mutually nested Jin et al. (2008). For instance a
large set of models and tests are not applicable because they are based on Gaussian
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behaviour. The same applies to nonlinear techniques such as ARIMA that relies on
assumptions such as stationarity, invertibility and independence of residuals Povinelli
(2000). More successful application have ARCH/GARCH models because, on long-
term horizons, they display weak persistency as “the time correlation disappears and
a simple uncorrelated Itô process is recovered” Carbone et al. (2004). The squared
form of the lagged shocks, however, disables the ability to deal with asymmetric
volatility due to different effect that positive or negative perturbations may have
Zivot (2009).

A different kind of models, but explicitly designed for earthquakes, are based
on the Utsu (1970) framework in which a combination of a strong main shock and
after-shocks is considered to assess the total damage (see for example Cai et al.
(2020)).

Point process such as Hawkes process are widespread in finance as they are able of
modelling temporal events characterized by self-exciting properties (for a survey see
Bacry et al. (2015) and Hawkes (2018)). They have been used for modelling order-
book events, risk contagion modeling, optimal execution strategies, etc. In insurance
they can be employed for modelling earthquake swarms Ogata (1988) or mortality
risk Cox et al. (2010). Multivariate Hawkes processes Embrechts et al. (2011) are
expressly designed to model multiple correlated sequences, where the occurrence
of an event in a sequence may influence the occurrence of new events in another
sequence. However, those processes may either fail in capturing the mutual influence
between processes or may become computational inhibitive Hall and Willett (2016),
Eichler et al. (2017), Shang and Sun (2019). For this reason, in our quest for jointly
modelling expected losses and volatility for any kind of natural disaster, we had
decided to not pursue on this pathway.

As mentioned in the Introduction, in this work we want to follow a new path based
on our previous research on financial time series, but in order to do so, we need first
to characterize natural disaster dynamics in terms of persistence and randomness.
Persistency (or trend reinforcing) is when, in a time series, next value is more likely
the same as the current value. For analysing that, we recur to the Hurst exponent
(He) Hurst (1956) which varies between 0 and 1. Low levels of He indicate that the
dynamics is anti-persistent and anti-correlated, He around = 0.5 implies randomness,
high values indicate persistent and correlated dynamics.

The Hurst exponent “is robust with few assumptions about the underlying sys-
tem, it has broad applicability for time series analysis” Qian and Rasheed (2004)
moreover is a “robust statistic for testing the presence of noncyclic long run statisti-
cal dependence” Mandelbrot and Wallis (1969). For those reasons the He has been
employed in various fields. For instance, Mandelbrot and Van Ness (1968) applied it
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when modelling, by means of fractional Brownian motions, strong interdependence
between distant samples in natural time series.

In finance the Hurst exponent is around 0.5 Nawrocki (1995), Qian and Rasheed
(2004), but it varies a lot depending on the market sentiments leading to “some
episodes alternating low and high persistent behavior” Alvarez-Ramirez et al. (2008)
occurring in correspondence of downturns.

With regard to natural disaster the He is around 0.24, which “indicates that these
time series are fractal and relatively long-term” anti-persistent Jin et al. (2008). On
our end we confirm what has been reported in literature (see Table 3).

A low level of the Hurst exponent indicates that the strength of mean-reverting
does increase. For this reason we selected a generalized two-factor square-root model
that, in our opinion, matches the above specified features. By doing that we take
some inspiration from observing electricity spot prices. In that context, for example,
an Ornstein-Uhlenbeck process, i.e. a mean-reverting drift damping model, has been
used for modelling volatility persistence and anti-correlations Rypdal and Løvsletten
(2013). By drawing this parallel, for forecasting losses due to natural disasters, we
link up with the set of tools available for financial analysis and risk management.

Earthquake Storm Flood Drought Ext. Temp.
0.0887 0.2026 0.1287 0.1528 0.0964

Table 3: Hurst exponent for log-losses of natural disasters.

As just mentioned, there is a wide range of models available in financial litera-
ture. As we need to model levels, volatilities and their interdependencies, we exclude
unifactorial models. In addition, as there is a trade-off between the increased benefit
of having a large number of state variables and issues caused by estimations, overfit-
ting and so on, we limit ourselves to the class of two-factor models. On those models
literature is abundant Rouah (2013), Tsuchiya (2019), Ewald et al. (2019).

The Heston model 1993, for example, may suit well because it describes the
evolution of an asset jointly with its volatility. However, as noted by Heston himself,
an increase in the volatility of volatility can capture the kurtosis of spot returns
but not the skewness. Therefore, “in order to capture the skewness, it is crucial to
also include the properly specified correlation between the volatility and the spot
exchange rate of returns” Ahlip et al. (2017). As in our time series, kurtosis is much
higher than skewness (see Table 2) this shortfall is crucial.

The so-called two-factor Gaussian models were introduced by Hull and White
1994 and then extended by Brigo and Mercurio with the G2++ model 2006. They
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first determine a time homogeneous two-factor short rate dynamics and then, they
add a deterministic shift function to fit the initial term structure of interest rates.
However, “the obtained results are rather clumsy and not intuitive, which means
that a special care has to be taken for their correct numerical implementation” Acar
and Natcheva-Acar (2009).

Another class of two-factor models is the one introduced by Longstaff and Schwartz
1992, which belongs to the class of stochastic mean and stochastic volatility model.
Within the proposed framework, Longstaff and Schwartz approached interest rate
volatility and term structure modelling by linking up yields on volatility. This frame-
work performs better than the GARCH model Bollerslev (1986) because the addition
of the volatility as a second state variable allows more freedom in modelling humps,
troughs, and interconnectedness between levels and volatility. Empirical evidence
found that the short rate exhibits volatility clusters which can be well approximated
by stochastic volatility Faff and Treepongkaruna (2013). More recently, Christof-
fersen et al. (2009) modelled levels by a stochastic high mean reversion factor, and
correlations between returns and variance by a second factor with lower mean re-
version. Similarly, Recchioni and Sun (2016) modelled asset price dynamics by a
two-factor model where the first factor represents stochastic interest rates and the
second one stochastic volatility. On pricing and risk in natural gas markets Kohrs
et al. (2019) proposed a multidimensional variant of the Longstaff–Schwartz model
for deriving options’ properties under realistic price dynamics.

Other models, commonly used for studying the tail behaviour of distribution, are
based on the extreme value theory (EVT). Within the EVT framework, we consider
the generalized Pareto distribution (GPD) introduced by Pickands III (1975). A
classical reference is Coles et al. (2001) who introduces the theoretical framework of
extreme value models and the statistical inferential techniques. GPD has applications
in a number of fields, including epidemiology Chen et al. (2015), non-life insurance
Hanafy et al. (2020), environmental extreme events Chavas et al. (2013), Martins
et al. (2020), etc. For this reason we include it between the baseline models against
which we intend to run our analysis.

The last class of models we consider as baseline is the generalized linear model
(GLM) Nelder and Wedderburn (1972) which allows for response variables to have
error distribution models other than a normal distribution. GLM has extensive appli-
cation in insurance. For example claim sizes, frequencies and occurrences of claims
do not have normal outcomes. Furthermore, the link between outcomes and risk
drivers is multiplicative rather additive De Jong and Heller (2008). Thus the dis-
tribution of the response is chosen from the exponential family so that the response
can be heteroskedastic.
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In this work, in a quite different context, we draw inspiration from the above
mentioned literature when dealing with natural disasters.

3. Materials, methods and techniques

This Section is partitioned as follows. After mentioning the dataset used for
numerical results in Section 3.1, we introduce our two-factor square-root model to
describe the dynamics of log-losses and their volatility in Section 3.2. Further, two
baseline models for comparison and benchmarking are considered in Section 3.3.
The numerical simulation and the parameter calibration of the proposed model are
explained in Section 3.4. Expected value predictions of log-losses and their volatility
are obtained by providing, via a Generalized Pareto Distribution (GPD), a maximum
threshold estimate of log-losses in terms of Value at Risk (VaR). Next, measures
of forecasting accuracy are defined in Section 3.5, and, finally, the most popular
backtests used by financial institutions are considered in Section 3.6 to validate our
model based on VaR exceedances.

3.1. Dataset

Our dataset is from the Emergency Events Database (EM-DAT) hosted at the
Centre for Research on the Epidemiology of Disasters (CRED). The EM-DAT database
contains the “world’s most comprehensive data on the occurrence and effects of more
than 23,000 technological and natural disasters from 1900 to the present day” CRED
(2020). Frequency of data is on an annual basis. For our convenience we have de-
cided to focus on five natural disasters with higher impact, namely earthquake, storm,
flood, drought and extreme temperature (see Figure 2).
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Figure 2: Sum of deaths, occurrences and total damages (US$) of natural disasters (1900-2020).

3.2. A generalized two-factor square-root model

To introduce our generalized two-factor square-root model, let us start by denoting
with (xt)t≥0 and (σt)t≥0, respectively, the logarithm of financial losses due to natu-
ral disasters and the corresponding volatility. Assume that the dynamics of these
processes, defined on a given probability space (Ω,F,P), where P is the objective
probability measure, evolves like a generalized two-factor square-root model defined
as follows {

dxt = k(θ − xt)dt+ ω
√
xtσt dW

x
t (x0 ≥ 0)

dσt = δ(γ − σt)dt+ η
√
σt dW

σ
t (σ0 ≥ 0),

(1)

where (W x
t )t≥0 and (W σ

t )t≥0 are two correlated Brownian motions, i.e.,

dW x
t dW

σ
t = ρ dt (t ≥ 0).

We can write
W x
t = ρW σ

t +
√

1− ρ2Bt, (2)

where (Bt)t≥0 is a standard Brownian motion independent of (W σ
t )t≥0.

Assume
2δγ > η2, 2kθ > ω2σ,

so that the state-spaces of the processes (σt)t≥0 and (xt|σt = σ)t≥0 (with σ > 0) are
both equal to R+.
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Two-factor models like the one in Eq. (1) have advantages and disadvantages
that should be considered in terms of the intended use before to select one of them.
For example, in order to preserve the analytical tractability, the CIR2++ has set
ρ = 0. Without that, it is no possible to compute analytically bond prices and
rates starting from the short-rate factors. This because the square-root non-central
chi-square processes ”do not work as well as linear-Gaussian processes when adding
nonzero instantaneous correlations” Brigo and Mercurio (2006). Another feature of
the CIR2++ is that it can maintain positive rates through reasonable restrictions on
the parameters and that it has fatter tails than the Gaussian distribution in G2++.
In fact, in the CIR2++ model, the distribution of the short rate is the result of the
sum of two independent noncentral chi-square variables. However, the G2++ model
is more analytically tractable and easier to implement, thus it is more suitable for
practical applications.

A possible way to reduce the negative impact of the non-zero correlation ρ on the
numerical tractability is given by the following result.

Proposition 3.1. With refer to (1), consider the functions

g(y) =

∫ y

x0

1√
u
du, f(y) =

ω

η
(y − σ0) (y ∈ R+). (3)

Then, the system of SDE’s (1) is equivalent to{
d
(
g(xt)− ρf(σt)

)
= h(xt, σt)dt+ ω

√
σt(1− ρ2) dBt

dσt = δ(γ − σt)dt+ η
√
σt dW

σ
t ,

(4)

where

h(xt, σt) =
k(θ − xt)√

xt
− ω2σt

2
− ρωδ(γ − σt)

η
. (5)

Proof. By virtue of the Ito-Doeblin formula (see, e.g., (Shreve 2004, Section 4.4.2))
we get

dg(xt) =
1
√
xt
dxt −

1

2xt
√
xt

(dxt)
2 =

(
k(θ − xt)√

xt
− ω2σt

2

)
dt+ ω

√
σt dW

x
t , (6)

and

df(σt) =
ω

η
dσt =

ωδ(γ − σt)
η

dt+ ω
√
σt dW

σ
t . (7)
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If substitute (2) and (7) in (6), obtain

dg(xt) =

(
k(θ − xt)√

xt
− ω2σt

2

)
dt+ ω

√
σt (ρdW σ

t +
√

1− ρ2 dBt) =

(
k(θ − xt)√

xt
− ω2σt

2
− ρωδ(γ − σt)

η

)
dt+ ρdf(σt) + ω

√
σt(1− ρ2) dBt,

i.e.,
d
(
g(xt)− ρf(σt)

)
= h(xt, σt)dt+ ω

√
σt(1− ρ2) dBt.

The above function g in (3) represents the so-called Lamperti’s transformation
which reduces to 1 the diffusion term of (xt)t≥0. Proposition 3.1 introduces a new
auxiliary process

pt := g(xt)− ρf(σt) (t ≥ 0) (8)

with dynamics
dpt = h(xt, σt)dt+ ω

√
σt(1− ρ2) dBt,

or, equivalently,

pt = p0 +

∫ t

0

h(xs, σs) ds+ ω
√

1− ρ2

∫ t

0

√
σs dBs,

where p0 = g(x0) − ρf(σ0) ≥ 0. In particular, the stochastic part of (pt)t≥0 is not
correlated with those of (σt)t≥0. This fact allows a fast and independent simulation
of the process (xt)t≥0; indeed, one can simulate (σt)t≥0 and (pt)t≥0 separately and
finally may compute (xt)t≥0 as

xt = g−1(pt + ρf(σt)) (9)

(being g an invertible function).
In view of the forecast analysis (see Section 4), another helpful result concerning
(pt)t≥0 is given below.

Proposition 3.2. The conditioned auxiliary process (pt|σt = σ)t≥0 (σ > 0) satisfies
the strong Markov property.

Proof. It is simple to see that the infinitesimal generator of (xt|σt = σ)t≥0 is a one-
dimensional time-homogeneous operator, given by

Lxu(x) =
ω2σ x

2

∂2u(x)

∂x2
+ k(θ − x)

∂u(x)

∂x
,
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for any dummy variable x ∈ R+ and for any u of class C0
2.

Analogously, the infinitesimal generator of (pt|σt = σ)t≥0 is given by

Lpu(p) =
ω2σ(1− ρ2)

2

∂2u(p)

∂p2
+ h(p, σ)

∂u(p)

∂p
,

for any p ∈ R, u ∈ C0(R+), with h defined in (5).
Following Goldstein et al. (2016), the operator Lx, with domain

D(Lx) = {u ∈ C0(R+) ∪ C2(R+)|Lxu ∈ C0(R+)},

generates a Feller semigroup on C0(R+) (see Engel and Nagel (2001), Goldstein
(1985)). Moreover, there exists an isomorphism

Ψ := g − ρf

which links the two variables x, p (and maps R+ in R), so that also the operator Lp,
with domain

D(Lp) = {u ∈ C0(R) ∪ C2(R)|Lpu ∈ C0(R)},

generates a Feller semigroup on C0(R+) (see (Bufalo et al. 2019, Lemma A.2) and
(Engel and Nagel 2001, Chapter II, Section 2.a)). This concludes the proof, since
any stochastic Feller process (i.e., a stochastic process whose infinitesimal generator,
with its domain, generates a Feller semigroup) verifies the strong Markov property
(see, also Böttcher et al. (2013), Oksendal (2013) and Taira (1984)).

3.3. Baseline models

In this Section four baseline models for comparison and benchmarking are consid-
ered as alternative candidates to Eq. (1) for modelling log-losses of natural disasters.
Namely, the first-order autoregressive AR(1) model, the two-factor Gaussian model
G2++, the extreme vale distribution model and the nonlinear regression model. The
AR(1) is pretty good in predicting the average loss and volatility of the stochastic
process when more sophisticated models fail. The other three models are often used
in insurance and finance for modeling and forecasting stochastic processes as men-
tioned in Sec. 2.

2C0(R+) denotes the Banach space of all the continuous and real-evaluated functions vanishing
at infinity
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3.3.1. The first-order autoregressive AR(1) model

The AR(1) model is a representation of a short-memory random process satisfying
the following equation:

Yt+1 = c+ ΦYt + εt+1.

The output random variable Yt+1 is assumed to depend linearly only on its own
previous value Yt and on the current value of a white noise process εt with zero mean
and constant variance σ2

ε . The process is stationary if the parameter ϕ ∈ (0, 1).
The AR(1) model has been already used in modelling and understanding persis-

tence of climate variability Vyushin et al. (2012). Moreover, it can be considered as
the discrete-time analogue of the mean-reverting Ornstein-Uhlenbeck (OU) process

dYt = χ(µ− Yt)dt+ λdWt.

Indeed, when the Ornstein-Uhlenbeck process is sampled at equally spaced time
intervals [t, t+ ∆], we get

Yt+∆ = c+ ΦYt + εt+∆,

with

Φ = e−χ∆, c = (1− Φ)µ, εt+∆ ∼ N

(
0,
λ2

2χ
(1− Φ2)

)
.

The conditional distribution of the OU process is normal with parameters

E[Yt+n∆|Yt] = µ(1− Φn) + Yt Φn

and

Var (Yt+n∆|Yt) =
λ2

2χ
(1− Φ2n).

3.3.2. The G2++ model

The G2++ model is a two-factor Gaussian model where the state process is given
by the sum of two correlated Gaussian factors plus a deterministic function that is
properly chosen so as to exactly fit the real observed data. The model is analytically
quite tractable as explicit formulas for its distribution and moments can be readily
derived; for these reasons, Gaussian models like this G2++ model are very useful in
practice (for more details see (Brigo and Mercurio 2006, Chapter IV)). Under this
model the principal process Yt is expressed as the sum

Yt = rt + qt + ϕ(t),
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where the processes {rt}t≥0 and {qt}t≥0 satisfy{
drt = −a rtdt+ ψ dW r

t

dqt = −b q dt+ ζ dW q
t

(10)

with dW r
t dW

q
t = ρ dt and a, ψ, b, ζ are positive constants. In particular, the model

fits the observed data if and only if (Brigo and Mercurio 2006, Corollary 4.2.1))

ϕ(t) = fs(t) +

(
ψ

2as

(
1− e−a(t−s))2

+

(
ζ

2b

(
1− e−b(t−s)

))2

+ ρ
ψζ

a b

(
1− e−a(t−s))(1− eb(t−s)),

where fs(t) denotes the instantaneous forward value of Yt in t, computed at time
s < t.

Denoted by Ft the sigma-field generated by the pair (rt, qt) at time t, it can be
shown that for any 0 ≤ s < t, Xt conditional on Fs is normally distributed with
mean

E[Yt|Fs] = rse
−a(t−s) + qse

−b(t−s) + ϕ(t), (11)

and variance

Var (Yt|Fs) =
ψ2

2a

(
1− e−2a(t−s))+

ζ2

2b

(
1− e−2b(t−s))

+ 2ρ

(
ψ ζ

a+ b

)(
1− e−(a+b)(t−s)). (12)

3.3.3. The extreme value distribution model (EVM)

Extreme value distributions are very popular in finance as they are useful to
model extreme events that are not captured by other distributions like the Gaussian
whose tails decay exponentially fast.

Given the location parameter a1 and scale parameter a2, the probability density
function for the extreme value distribution

y = f(x|a1, a2) =
1

a2

e(x−a1)/a2−e(x−a1)/a2 .

It can be observed that if X has a Weibull distribution with parameters b1 and
b2, then logX has an extreme value distribution with parameters a1 = log b1 and
a2 = 1/b2.
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3.3.4. Generalized linear model (GLM)

The last baseline model that we introduce for comparison is the generalized linear
model (GLM) that we use for nonlinear prediction (NLP)

y = c1 + c2e
−c3x (13)

on which we have performed a nonlinear least squares regression. Eq. (13) is con-
sistent with the G2++, is an industry standard De Jong and Heller (2008), Ohlsson
and Johansson (2010), Goldburd et al. (2016) and, in our tests, performed well in
fitting data. We have run a robust estimation with the iteratively reweighted least
squares algorithm Holland and Welsch (1977) which, at each iteration, recalculates
the weights based on the residual from the previous iteration. This process progres-
sively downweights outliers and iterations continue until the weights converge.

3.4. Numerical implementation

3.4.1. Forecasting the expected value

As explained in Section 2, many candidate models have been tested, but we
found that a two-factor model to describe the dynamics of financial log-losses and
their volatility is the best compromise between tractability and efficiency. In par-
ticular, the novelty of the proposed model (1) consists in a nonzero correlation ρt
between the two processes xt and σt. Indeed, in contrast with a two-factor Gaussian
model, which is more analytically tractable, the two-factor square-root model be-
comes analytically unmanageable if ρt 6= 0 (see, for instance, the G2, G2++, CIR2
and CIR2++ models described in Brigo and Mercurio (2006)).
Having said that, if ρ 6= 0, no closed formula is known for the transition density of xt.
As a consequence, the conditional expected values of xt and σt cannot be computed
explicitly. That means we have to recur to numerical methods in order to produce
forecasts within the framework of model (1).
Denote by Xs = {Xs+1, ......Xs+N}, s > 0, a time series of N observed realizations
of the process (xt)t≥0. Moreover, consider a window, It, of fixed size L, that is rolled
through time t ≥ 0. The length of this window is the historical period over which we
calibrate our parameter vectors νxt := (kt, θt, ωt) and νσt := (δt, γt, ηt), for any time t.
In order to simulate the volatility process σt, we construct a time series, Vs, of “point-
wise” volatilities, obtained as the pointwise difference in absolute value between Xs

and the corresponding exponential moving average (EWMA) Es, that is

Vs+u = |Xs+u − Es+u|, 1 ≤ u ≤ N. (14)

In our opinion, the above time series is more accurate than other statistics, e.g.
the sample standard deviation, because it measures the variability of the process xt
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depending on time.
We use the time series Vs to calibrate the parameter vector νσt on the rolling window
It by applying the maximum likelihood (ML) estimation method, implemented in
Matlab, to estimate the parameters of the CIR process Kladıvko (2007). In financial
literature, there exists different and more sophisticated methodologies to estimates
the parameter of ergodic diffusion processes (see, e.g., (Orlando et al. 2019c, Section
4.4)) but they require rolling windows of size greater than L to be efficient.
Following the algorithm proposed in Kladıvko (2007), the ML estimate ν̂σt is obtained
by solving the following optimization problem

ν̂σt = arg
(
max
νσt

lnL(νσt )
)
. (15)

Notice that lnL(νσt ) denotes the log-likelihood function of the CIR process

lnL(νσt ) =
L−1∑
u=1

P(Vs+h+u+1|Vs+h+u) (h ≥ 1),

computed on the window It = {Vs+h+1, ..., Vs+h+L}, t = s+ h+L, and P is the tran-
sition density of the CIR process (see (Jeanblanc et al. 2009, Proposition 6.3.2.1)).
To ensure the convergence to the ML estimates, the ordinary least-squares (OLS)
regression method is used to determine the initial parameter estimates.
The predicted future volatility value σFt+u, u ≥ 1, may be computed by the CIR
conditional expectation

σFt+u = EP[σt+u|σt] = θ̂σt + (Vt − θ̂σt )e−k̂
σ
t u (u ≥ 1), (16)

where Vt is the observed volatility corresponding to σt.
The estimate of the parameter vector ν̂xt on the rolling window It is obtained using
the same procedure above-described by using the time series Xs. The sample auto-
correlation of Xs on It, ρ̂t, with lag equal to −1, is considered as an estimate of the
correlation coefficient ρt.
In order to forecast the future value xFt+u, u ≥ 1, we applied the second-order Milstein
discretization scheme ((Orlando et al. 2019c, Section 4.5)) to simulate the auxiliary
process pt (see (8)) and σt observed at m equidistant points in the interval [t, t+ u]:


σSti+1

= σSti
+ δ̂t(γ̂t − σSti )∆ + η̂t

√
σSti

∆ Wσ
ti

+
η̂2t
4

[(√
∆ Wσ

ti

)2 −∆
]
,

pSti+1
= pSti

+ h
(
g−1(pSti

+ ρ̂tf(σSti
)), σSti

)
∆ + ω̂t

√
σSti

(1− ρ̂2t )∆ Bti +
(ω̂tσ

S
ti

(1−ρ̂2t ))
2

4

[(√
∆ Bti

)2 −∆
]
,

(17)

where f, g, h are defined by (3), (5), respectively, and ∆ = ti+1 − ti is the time-
step, being t = t1 < t2 < ...... < tm = t + u. The initial values of the simulated
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sample paths has been set (pSt , σ
S
t ) = (Pt, Vt), where (Pt, Vt) denote the corresponding

observations in the time series Ps
3 and Vs, respectively.

Following this procedure, we simulated h = 100, 000 trajectories (pS, σS). Then, the
predicted future value pFt+u, is obtained averaging over the 100,000 corresponding
simulated values, that is

pFt+u =
1

h

h∑
i=1

pSt+u,i. (18)

Finally, from relation (9), we get

xFt+u = g−1
(
pFt+u + ρ̂tf(σFt+u)

)
. (19)

Note that the Monte Carlo prediction, or equivalently, the (conditioned) expectation
used to forecast the future values in formulas (16), (18) and (19) is consistent with
the Assumption ?? and the related Proposition 3.2, being (σt)t≥0, (pt|σt = σ) and
(xt|σt = σ) (σ ≥ 0) a Markov process.

3.4.2. Forecasting the extreme value (VaR)

As tested in Section 4, the forecasted future values provide a good approximation
of the expected values of the financial log-losses and the corresponding volatility. To
avoid that a future observation will exceed a given high level, an upper bound of
predictions xFt+u is needed ensuring the 99% confidence level Value at Risk (VaR).
For this reason we define a correction term as the following random variable

zt+u := xt+u − (xFt+u + σFt+u), u ≥ 1. (20)

In other terms, as the distribution of losses is not normal, the correction term zt+u
is what we require to get our VaR with a confidence level of 99%. The realization
of the random value zt+u is denoted with Zt+u so that the upper bound V aRGPD of
the prediction xFt+u is

V aRGPD = xFt+u + σFt+u + Zt+u. (21)

As we intend to model the extreme values, we assume that Zt+u follows a General-
ized Pareto Distribution (GPD), a probability distribution introduced by Pickands
Pickands III (1975) as a model for tails. The cumulative distribution function is
given by, for all y > 0

G(y) =

1−
(

1 + ξy
β

)−γ
, if ξ > 0,

1− e−
y
β , if ξ = 0,

(22)

3Ps = g(Xs)− ρsf(Vs).
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where ξ, and β > 0 are the so-called shape and scale parameters, respectively, and
γ = 1/ξ is the tail index parameter.
To estimate the unknown GPD parameters (ξ, β) we adopted the following procedure.
Given the initial rolling window It = {Xs+1, ......Xs+L}, where t = s + L, used to
estimate the parameter vectors νσt , ν

x
t as above-described, consider a second fixed

window I′t = {Xs+L+1, ......Xs+L′} with initial size L′ > L on which we compute the

estimates (ξ̂t, β̂t). Then a realization, Zt+u, of the correction term zt+u is estimated
by the sample mean computed over 100,000 simulated random variables with GPD
and parameters (ξ̂t, β̂t). Note that in the next steps, while the window It rolls
through time, each year adding a new observation and taking off the oldest one, a
new observation is added each time to the window I′t. As a consequence, the size
L′ of I′t increases each time by one year. This is to avoid too large variations in the
computation of the correction term that may cause a shortfall of capital for insurers.

3.4.3. Example on earthquake forecasts

As an example, in the following picture Fig. 3, we display the log-losses of the
natural disaster (dotted black line). As shown the behaviour is quite erratic and
difficult to anticipate. Then, for an insurer, the objective is at least to estimate the
expected value over the years. The SMA (in blue) shown here is calculated on the
realized occurrences. Then, we show our forecasts (red line) as well as the upper
bound (green line). The latter is the VaR for our model (see Sec. 3.2) as obtained
through the GPD with the methodology described in Sec. 3.4. Graphically it is
possible to see that our model not only is pretty close to the ex post SMA but, also,
with a single exception over 119 years, is always above the peaks of realized losses.

In addition to the log-losses, we want to estimate their average volatility. This
is of particular importance from a firm standpoint as the aim, is not only to ensure
solvency but, also, to deliver a regular stream of cash flow to the shareholders by
avoiding excessive variations due to reserves’ volatility. Fig. 5 compares the average
ex post volatility indicated as SMA (blue line) with our ex ante forecast (red line).
Once again, it is possible to see that our forecast is pretty close to the realized
volatility.

We recall that we defined Zt as the correction term to be added to both the
occurrences and the volatility. This term changes depending on the size of the
windows and influences the values in Tables 5, 6, 9 in Sec. 4. Fig. 6 shows how
the correction term can change dramatically when the window is bigger than 50. In
our case we opted for a window of size of 20 at that is what we consider a satisfying
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Figure 3: Earthquake Forecasts. The (dotted) black line is the log-losses of the natural disaster Xt, the blue line is
its SMA (ex post), the red line represents the corresponding forecasts xFt ; finally the green line refers to the upper
bound V aRGPD computed as xFt + σFt + Zt with L′ = 119. Out of sample forecasts.
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Figure 4: Earthquake volatility Forecasts. The black (dotted) line is the (pointwise) volatility of the log-losses of
disaster Vt, the blue line is its SMA (ex post), the red line represents the corresponding forecasts σFt .

Figure 5: Earthquake and its (pointwise) volatility forecasts.
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Figure 6: Percentage variation of Zt for different initial window size L′ ≥ 20, for any t ≥ L′.

trade-off between size and stability.
Finally, while standard techniques based on extreme value theories produce 5-

year forecasts, in Fig. 7 we demonstrate the versatility of our model which is able to
preserve its predicting power over longer horizons (e.g. 10 and 15 years).
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Figure 7: Earthquake log-losses forecasts for the next 5, 10 and 15 years.

3.5. Accuracy statistics for model predictions

As a measure of accuracy we adopt the following statistics:

20



� The root mean squared error (RMSE), defined as

RMSE =

√√√√ 1

N

N∑
h=1

e2
h, (23)

where eh denotes the residuals between the observed data and their predictions,
over N observations. It captures the closeness between the observed data and
the predicted values, in particular values near to zero represent a good result
and values near to 1 bad results. Notice that to reduce the effect of the outliers,
we use the normalized root mean squared error (NRMSE), defined as follows

NRMSE =
RMSE

Xmax −Xmin

, (24)

where Xmax and Xmin are the maximum and minimum value of the historical
time series, respectively.

� The mean absolute percentage error (MAPE), defined below

MAPE =
1

N

N∑
h=1

∣∣∣∣ ehXh

∣∣∣∣. (25)

Table 4 suggests the accuracy levels about the MAPE criterion.

MAPE Forecasting level

< 10% High
10%− 20% Good
20%− 50% Resonable
> 50% Inaccurate

Table 4: MAPE accuracy levels.

3.6. Backtesting on exceedances for model validation

In order to check if a model is able to meet expected maximum allowed excep-
tions, we recur the range of tools available to risk management. We said that the
upper bound of the GPD represents the maximum loss. Therefore, similarly to what
financial institutions do to backtest their VaR, in the following we describe the most
popular methods that we are going to use to validate our model.
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3.6.1. Traffic Light Test (TLT)

The Traffic Light Test was proposed by the Basel Committee on Banking Super-
vision 1996, Balthazar (2006) for giving a green light on the adopted model and it
is a variant of the binomial test. The TLT test, given a number of exceptions E,
calculates the probability of observing from 0 to E exceptions.

3.6.2. Kupiec’s POF Test

This test borrows its name from Kupiec (1995) and it is a variant on the binomial
test. The Kupiec test is also named proportion of failures (POF) test because the
way in which it is constructed. As well as the TLT test, the POF test is based on
the binomial distribution but, additionally, it uses a likelihood ratio. This to check
if the probability of exceptions is synchronized with the probability p defined by the
VaR confidence level. In case the frequency of exceptions over the backtested time
series is different than p, the VaR is rejected.

3.6.3. Kupiec’s TUFF and TBFI Tests

A second test suggested by Kupiec is called time until first failure (TUFF) Jorion
et al. (2009). The TUFF test checks when the first rejection occurs. If that rejection
happens (from the probabilistic point of view) too early, the test rejects the VaR.
Because the check is limited to the first exception leaves much information out (i.e.
what happened after the first exception is ignored) the TBFI test has been developed
to include all recorded failures.

3.6.4. Christoffersen’s (CC) Interval Forecast Tests

The (CC) Interval Forecast Tests has been proposed by Christoffersen (1998).
The idea is to check if the probability of observing an exception at a specific time
depends on whether an exception occurred. This test, differently from the uncondi-
tional probability of observing an exception, measures only the dependency between
consecutive times.

4. Numerical results

4.1. Results on 1-year horizon

In this section we apply the procedure described in Section 3.4 to the Dataset de-
scribed in Section 3.1. Detailed figures are reported in Section Appendix A. We set
the parameters L,L′ and ∆ equal to

L = 10Y, L′ = 20Y, ∆ =
1

360
.
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As a first step, we computed the NRMSE and MAPE statistics as a difference between
the forecasted financial log-losses due to natural disasters and the corresponding sim-
ple moving averages (SMA) (Table 5), and between the forecasted volatility and the
corresponding simple moving averages (SMA) (Table 6). Further we compare our
results with the predictions given by the baseline models. As mentioned the AR(1)
and the SMA are indicated to forecast smooth time series. Notice that the calibra-
tion of the G2++ model follows the techniques described in Subsection 3.4, where
the processes rt and qt refer to Xt and Vt, respectively. This because we focus on the
variations instead of on the levels with the aim to keep them under control and, so,
to avoid unexpected large losses for insures. Notice that the expected log-losses and
their volatility are predicted by formula (11) and (12), respectively.

Forecasting error of considered models - Returns
Horizon Model Error Earthquake Storm Flood Drought Ext. Temp.

1 Y

NRMSEEq.(1) 3.32% 4.80% 4.92% 4.54% 2.44%
NRMSEAR 24.14% 20.18% 14.30% 17.55% 9.10%
NRMSEG2 19.30% 12.46% 15.98% 19.05% 11.21%
NRMSEEVM 5.79% 4.48% 4.9% 19.05% 10.21%
NRMSENLP 17.12% 5.94% 5.36% 7.18% 2.99%

1 Y

MAPEEq.(1) 4.77% 3.02% 5.87% 6.67% 3.02%
MAPEAR 6.59% 7.14% 18.24% 20.77% 12.16%
MAPEG2 7.66% 8.42% 22.78% 21.58% 14.34%
MAPEEVM 5.23% 3.13% 9.01% 10.23% 6.57%
MAPENLP 8.01% 4.20% 13.35% 6.70% 2.91%

Table 5: NRMSE and MAPE between 1 year forecasts of log-losses and their SMA. The gray
highlights the results obtained with model in Eq. (1). Out of sample results.

In order to check if the correction term Zt ensures the 99% confidence level VaR,
we consider the percentage variation of the exceeds, for any t ≥ L′. Indeed, the
percentage variation of Zt check if smooth hedging (i.e., without drastic jumps) holds
true for insurance companies. In particular, we analyze the percentage variation and
the exceeds for different size L′ of the window I′t, with L′ ≥ 20. Table 8 reports the
maximum percentage variation of Zt and the minimum size L′ giving the 99% VaR,
for any t ≥ L′. Moreover, the Kupiec (POF), Christoffersen (CC) and TUFF/TBFI
test, at 99% significance level, do not reject their null hypothesis with p-value and

23



Forecasting error of considered models - Volatility
Horizon Model Error Earthquake Storm Flood Drought Ext. Temp.

1 Y

NRMSEEq.(1) 8.76% 9.24% 6.55% 9.85% 5.19%
NRMSEAR 53.10% 37.35% 18.77% 39.43% 44.56%
NRMSEG2 24.73% 13.75% 25.48% 45.63% 20.61%
NRMSEEVM 11.74% 8.49% 6.01% 9.6% 28.80%
NRMSENLP 30.12% 24.52% 23.07% 33.45% 23.16%

1 Y

MAPEEq.(1) 5.10% 3.62% 3.60% 7.25% 2.88%
MAPEAR 11.48% 12.07% 11.13% 20.98% 26.88%
MAPEG2 12.13% 11.74% 20.68% 28.94% 10.50%
MAPEEVM 12.04% 11.71% 8.91% 14.23% 16.72%
MAPENLP 35.27% 33.20% 31.31% 48.27% 38.19%

Table 6: NRMSE and MAPE between 1 year forecasts of volatility of log-losses and their SMA.
The gray highlights the results obtained with model in Eq. (1). Out of sample results.

L-ratio given in Table 7 4; and the traffic light test gives a “green” category with
cumulative probability of failures equal to 1.6%.

POF CC TUFF, TBFI
Response ”accept” ”accept” ”accept”
p-value 0.1542 0.3623 0.4297
L-ratio 2.0301 2.0301 4.0964

Table 7: 99% VaR test response. Out of sample results.

Earthquake Storm Flood Drought Ext. Temp.
Max. Variation 3.70% 3.25% 4.15% 3.26% 3.55%

Min. L′ 61 20 20 23 55

Table 8: Maximum percentage variation of Zt and minimum L′ giving the 99% confidence level
VaR. Out of sample results.

4Notice that the p-value and L-ratio of the above tests are the same for each time series since
they have the same number of observations, same number of exceedances and relative frequency.
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4.2. Results on 5-, 10- and 15-year horizon

In addition to 1-year forecasts, to highlight the power of our predictions, we apply
the analysis to the next 5Y , 10Y and 15Y horizon. As previously done, all forecasts
are out of sample. We start with a window of ten data (from T = 10Y ) and the
results are listed in Table 9.
For reason of space, graphs are in Appendix A, where we show the forecasted series
(relative to the next year or to 5, 10 and 15 years) xFt+u, σ

F
t+u and the percentage

variation of Zt for any natural disaster considered.

Forecasting error of considered models - Returns
Horizon Model Error Earthquake Storm Flood Drought Ext. Temp.

5 Y

MAPEEq.(1) 5.10% 6.23% 12.68% 20.60% 20.01%
MAPEAR 15.46% 14.68% 29.75% 34.34% 22.52%
MAPEG2 7.79% 8.45% 23.01% 26.70% 20.91%
MAPEEVM 5.91% 8.03% 22.73% 22.12% 20.84%
MAPENLP 6.90% 7.88% 30.84% 24.37% 12.25%

10 Y

MAPEEq.(1) 5.32% 7.95% 17.60% 29.45% 21.45%
MAPEAR 16.46% 18.19% 28.75% 38.50% 54.05%
MAPEG2 7.90% 10.15% 26.59% 29.70% 25.25%
MAPEEVM 9.16% 12.85% 29.77% 36.91% 23.25%
MAPENLP 11.23% 14.49% 46.64% 34.14% 23.95%

15 Y

MAPEEq.(1) 6.72% 10.25% 19.69% 32.68% 25.15%
MAPEAR 18.46% 22.19% 29.84% 42.04% 56.27%
MAPEG2 9.30% 10.92% 27.09% 39.70% 29.34%
MAPEEVM 11.14% 16.63% 31.99% 38.31% 26.11%
MAPENLP 14.47% 28.97% 48.29% 35.42% 39.14%

Table 9: Different MAPE for 5, 10 and 15 years predictions. The gray highlights the results obtained
with model in Eq. (1). Out of sample results.

Notice that, as well as illustrated in Tables 5 and 6, we obtained similar results
with regard to the volatility and the NRMSE. For the sake of readability we do not
show those results.
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5. Conclusions

In this work we have presented an original model to forecast (over 1, 5, 10 and
15 years) both the expected value of losses as result of some natural disasters as
well as their volatility. To this end we have developed a generalized two-factor
square-root model and linked up losses with volatility through stochastic correlation
following a Brownian motion. However, while generalized linear models are common
instruments for the pricing of non-life insurance contracts Laudagé et al. (2019), they
are inadequate for extreme claims. For this reason, to quantify the maximum loss
in terms of Value at Risk (VaR), we employed a Generalized Pareto Distribution
(GPD). The performance of our model was compared with four baseline models (i.e.
AR, G2++, EVT and NLP) in terms of accuracy. Exceedances over the forecasted
VaR (that in our case is the upper bound of the GDP) were backtested. The result is
that our model compares well with respect to the benchmarks (forecasting efficiency)
and that backtests confirm the goodness of the chosen VaR (model validation). More
in general, this methodology applies as well to dramatic changes of a given line of
business (LOB) due to unexpected events such as COVID-19.
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Appendix A. Graphical evidences

In this section we report some figures showing the out of sample results we ob-
tained with our model. For each type of natural disaster first we show the expected
loss alongside with the upper bound of our estimate (i.e. a sort of forecasted worst
case). Then, as the insurer needs to keep under control the volatility of the losses,
we also display the pointwise volatility. See Figures A.8, A.11, A.14, A.17.

After that we show the variation of zt and, finally, the forecasts with different
time horizon (5, 10 and 15 years) jointly with their related upper bounds. The latter
with the usual intent to keep the exceedances under control. See Figures A.9, A.10,
A.12, A.13, A.15, A.16, A.18, A.19.

As documented, all figures support the validity of the proposed model.
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Appendix A.1. Storm
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(a) Storm Forecasts. The (dotted) black line is the log-losses of the natural disaster Xt, the blue line is its SMA
(ex post), the red line represents the corresponding forecasts xFt ; finally the green line refers to the upper bound
V aRGPD computed as xFt + σFt + Zt with L′ = 119. Out of sample forecasts.
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(b) Storm volatility Forecasts. The black (dotted) line is the (pointwise) volatility of the log-losses of disaster Vt,
the blue line is its SMA (ex post), the red line represents the corresponding forecasts σFt .

Figure A.8: Storm and its (pointwise) volatility forecasts.
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Figure A.9: Percentage variation of Zt for different initial window size L′ ≥ 20, for any t ≥ L′.
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Figure A.10: Storm log-losses forecasts for the next 5, 10 and 15 years.
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Appendix A.2. Flood

20 40 60 80 100 120
t (years)

0

5

10

15

20

25

30
Flood
SMA
Forecasts
Upper Bounds

(a) Flood Forecasts. The (dotted) black line is the log-losses of the natural disaster Xt, the blue line is its SMA
(ex post), the red line represents the corresponding forecasts xFt ; finally the green line refers to the upper bound
V aRGPD computed as xFt + σFt + Zt with L′ = 119. Out of sample forecasts.
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(b) Flood volatility Forecasts. The black (dotted) line is the (pointwise) volatility of the log-losses of disaster Vt, the
blue line is its SMA (ex post), the red line represents the corresponding forecasts σFt .

Figure A.11: Flood and its (pointwise) volatility forecasts.
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Figure A.12: Percentage variation of Zt for different initial window size L′ ≥ 20, for any t ≥ L′.
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Figure A.13: Flood log-losses forecasts for the next 5, 10 and 15 years.
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Appendix A.3. Drought
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(a) Drought Forecasts. The (dotted) black line is the log-losses of the natural disaster Xt, the blue line is its SMA
(ex post), the red line represents the corresponding forecasts xFt ; finally the green line refers to the upper bound
V aRGPD computed as xFt + σFt + Zt with L′ = 119. Out of sample forecasts.
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(b) Drought volatility Forecasts. The black (dotted) line is the (pointwise) volatility of the log-losses of disaster Vt,
the blue line is its SMA (ex post), the red line represents the corresponding forecasts σFt .

Figure A.14: Drought and its (pointwise) volatility forecasts.
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Figure A.15: Percentage variation of Zt for different initial window size L′ ≥ 20, for any t ≥ L′.
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Figure A.16: Drought log-losses forecasts for the next 5, 10 and 15 years.
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Appendix A.4. Extreme temperature
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(a) Extreme temperature Forecasts. The (dotted) black line is the log-losses of the natural disaster Xt, the blue line
is its SMA (ex post), the red line represents the corresponding forecasts xFt ; finally the green line refers to the upper
bound V aRGPD computed as xFt + σFt + Zt with L′ = 119. Out of sample forecasts.
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(b) Extreme temperature volatility Forecasts. The black (dotted) line is the (pointwise) volatility of the log-losses
of disaster Vt, the blue line is its SMA (ex post), the red line represents the corresponding forecasts σFt .

Figure A.17: Extreme temperature and its (pointwise) volatility forecasts.
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Figure A.18: Percentage variation of Zt for different initial window size L′ ≥ 20, for any t ≥ L′.
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Figure A.19: Extreme Temperature log-losses forecasts for the next 5, 10 and 15 years.
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Extended abstract 1

We integrate state-of-the-art stochastic Debt Sustainability Analysis (DSA)
with a climate Integrated Assessment Model (IAM) to evaluate the impact of
climate changes to estimate the risks to sovereigns from climate change and
allows for the estimation of potential fiscal space to deal with mitigation and
adaptation costs. We employ the scenario matrix architecture developed by
the IPCC (The Intergovernmental Panel on Climate Change), looking at nar-
rative scenarios of plausible combinations of greenhouse-gas concentrations
(RCP, Representative Concentration Pathway) with pathways of economic
and social developments (SSP, Shared Socioeconomic Pathways). See for
more details. We work with the RICE50+ [3] that considers anthropogenic
greenhouse gas emissions in climate systems and climate change impacts
on social-economic systems, to obtain forward-looking projections of GDP
growth, potential economic damages and per-capita GDP. We then conduct
DSA using a stochastic portfolio optimization model (DebtRisk) [2] using
RICE50+ output as baseline GDP growth. The DSA produces a fan-chart
of the two key vulnerability indicators used by the International Monetary
Fund and the European Stability Mechanism: Debt-to-GDP ratio (stock,
D/Y) and Gross Financing Needs (flow, GFN/Y). These fan charts extend
several years into the future and are summarised by percentiles. Our final
aim is to build a vulnerability map to show how the climate changes will
impact debt dynamics with a given probability score.
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Extended abstract
1

This paper presents a veri�cation and an extension - as de�ned in Clemens
[1] - of the study entitled �Uncertain outcomes and climate change policy� by
R.S. Pindyck, J. Environ. Econ. Manag. Pindyck [2] can be interpreted as a
very simpli�ed integrated assessment model (IAM) for the analysis of climate
change. The model incorporates the distribution of (uncertain) temperature
change and the distribution of the (uncertain) impact of this change on the
growth of consumption, and computes willingness to pay (WTP), i.e. �the
fraction of consumption . . . that society would be willing to sacri�ce, now
and throughout the future, to ensure that any increase in temperature at a
speci�c horizon H is limited to τ .� These fractions are typically below 2%;
Pindyck [2] states that this is consistent with the adoption of a moderate
abatement policy.

Replication is of paramount importance in science, and lies at the very
heart of what di�erentiates science from cheap talk and non-scienti�c ar-
guments. There is a growing awareness of the need for more replication
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studies; too many scholars have sadly admitted faltering or failed attempts
to reproduce other researchers' work; see Baker [3].

In several cases, our veri�cation analysis con�rms the results and the
associated economic interpretation. However, those results cannot be repli-
cated in one out of �ve cases. The replication is therefore only partially
successful: the numerical results for some sets of parameter values turn out
to be overly sensitive to a variety of technical computational settings. This
suggests that great caution is needed with regard to estimates and policy
conclusions based on this model. A re-estimation of the model using more
recent climate data, which suggest that temperature increase is now higher
on average but less widely dispersed, does not lead to signi�cant economic
di�erences in the results.
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Numerical replication; Numerical integration; Climate change; Economic im-
pact; Uncertainty.
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Extended abstract

Climate change is one of the most important challenges to face relating to
weather risk management, in particular for agriculture and energy sectors.
In recent years, adverse weather events changed in severity and frequency [1]
in such a way that the traditional statistical instruments, based on extreme
value theory, are not yet adequate to assess the risk. From a quantita-
tive point of view, the challenge is to identify analytical tools that allow
quantifying the risks in an e�ective way, exploiting the availability of huge
public databases, such as satellite or sensors' data, and the ability to process
them, o�ered by arti�cial intelligence as previously proposed by Bi�s and
Chavez [2]. In this sense, satellite data and machine learning algorithms
make weather index insurance a valid hedging tool in the agricultural sec-
tor [3]. However, since this type of hedging is subject to basis risk, it is

1



necessary to de�ne how to measure it, to evaluate the e�ectiveness of the
hedging position. Our approach consists of the construction of a paramet-
ric insurance contract based on weather index that allows mitigating the
basis risk through the use of satellite data and a "dynamic" random forest
algorithm, also comparing bagging and boosting algorithms [4], that allows
handling time-series data maintaining the temporal structure in the trees.
The parametric insurance will be based on the combination of two biocli-
matic indices, considering the joint distribution with respect to extreme and
non-extreme events, following the insurance contracts proposed by Salgueiro
[5], and customizing the insurance parameters on the basis of particular soil
conditions or of the premium rate. To do this, a theoretical framework and
a quanti�cation of basis risk for weather index insurance are also proposed.
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