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Economic models

Is economic time discrete or continuous?

Discrete time Arrow-Debreu model [2], [3], [6]

Overlapping-generations model [4], [9]

Continuous time Neoclassical and endogenous growth models
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Continuous time economic models are better than
discrete time models at representing qualitatively
discontinuous phenomena.

The long history of the study of discontinuous phe-
nomena in continuous (or differentiable) models.

Catastrophe theory and the theory of singularities
of smooth mappings: [11], [1].

In Economics, study of the Arrow-Debreu model
with the tools of differential topology: [3].
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Fundamentals of the Arrow-Debreu model

` goods
commodity space R`

consumption space

X = R`
+ = {x = (x1, x2, . . . , x`) ∈ R` | xj ≥ 0 for every j }

Consumers

utility function ui : X → R
price vector p ∈ R`

++

Prices are often normalized by the numeraire con-
vention p` = 1
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Consumer i’s maximization problem:

Maximize ui(xi)

subject to

p · xi ≤ wi and xi ∈ X

Under suitable assumptions: a solution exists, and
is unique: fi(p, wi).

Smooth Arrow-Debreu model:
1) ui is C∞;
2) Dui(xi) ∈ X ;
3) Let X ∈ R`:

XTD2ui(xi)X ≥ 0
Dui(xi)

TX = 0

}
⇒ X = 0.

4) u−1
i (c) is closed in R` for all c ∈ R.
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The demand function fi : S×R++ → R` is smooth
satisfies Walras law (i.e., p · fi(p, wi) = wi for all p
and wi)

satisfies the Slutsky property (symmetry and neg-
ative definiteness of the Slutsky matrix associated
with the demand function),

is a diffeomorphism.

See [3].
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Equilibrium

Distribution of individual endowment:
ω = (ω1, ω2, . . . , ωm) ∈ Xm

Space of individual endowments.
Ω = Xm.

Definition
The pair (p, ω) ∈ S × Ω is an equilibrium if∑

i

fi(p, p · ωi) =
∑

i

ωi.
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Discrete time dynamic version of the Arrow-Debreu
model

Goods are dated!
Time periods t = 0, 1, . . . , T
` goods per time period.
Commodity space R`(T+1)

Consumption space R`(T+1)
++

Utility function:

Ui(xi) =

T∑
t=0

δt
iui(xi(t))

consumer’s i maximization problem

Maximize Ui(xi)

subject to

p · xi =

T∑
t=0

p(t) · xi(t) = wi.
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Equilibrium

Consumer i’s endowments:
ωi = (ωi(t)) for t = 0, 1, . . . , T

Distribution of individual endowments:
ω = (ωi).

Definition

The pair (p, ω) is an equilibrium if∑
i

fi(p, p · ωi) =
∑

i

ωi.
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Continuous time version of the Arrow-Debreu
model

Time interval: [0, 1]
` goods at each date t ∈ [0, 1]
Commodity space: some subset of the set of maps
from [0, 1] into R`

Consumption space: some subset of the set of maps
from [0, 1] into R`

++.
Price functions: p : [0, 1] → R`

++.
Normalization p`(0) = 1.

Utility function

Ui(xi) =

∫ 1

0

ui(t, xi(t))dt

budget constraint∫ 1

0

p(t) · xi(t)dt ≤ wi.
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Observations

It follows from Tonelli’s semi-continuity theorem
(See for example [5]) that the concavity of ui(t, .) is
essentially equivalent to the upper semicontinuity
of the functional ∫ 1

0

ui(t, xi(t))dt

with respect to xi ∈ H1,s((0, 1), R`) for s ≥ 1 (Sobolev
space).

Note also that this is typically an isoperimetric prob-
lem. The difference with the standard formula-
tions is that the integrand p(t) ·(xi(t)−ωi(t)) is not
necessarily continuous with respect to t ∈ [0, 1].
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The space of functions of bounded variations

Introduced by Camille Jordan.

Let f : [0, 1] → R not necessarily continuous.

Total variation function

x ∈ (0, 1) Tf(x) = sup

N∑
j=1

|f (xj)− f (xj−1)|

over all integers N and all choices of {x1, x2, . . . , xN}
such that

0 < x1 < x2 < · · · < xN < x.

x < y ⇒ 0 ≤ Tf(x) ≤ Tf(y) ≤ ∞

Definition

V 1
0 (f ) = lim

x→1−0
Tf(x).

If V 1
0 (f ) < ∞, then f is a function of bounded varia-

tion.

BV (0, 1) the space of functions of bounded varia-
tion on (0, 1).
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Proposition

Let f ∈ BV (0, 1). Then f (x−0) exists for x ∈ (0, 1]
and f (x + 0) for x ∈ [0, 1). The set of points at
which f is discontinuous is at most countable.

There is a unique constant c and a unique function
with bounded variation, which is left-continuous
and satisfies

lim
x→a+0

g(x) = 0

so that
f (x) = c + g(x)

at all points of continuity of f .
Functions of bounded variation equal to c + g(x)
are said to be normalized. Let NBV (0, 1) the set
of normalized bounded variation functions.
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Lemma
Let f ∈ BV (0, 1) and x < y.
Then,

|f (x)− f (y)| ≤ Tf(y)− Tf(x)

ε > 0, there exists 0 < x1 < x2 < · · · < xN = x
such that

N∑
i=1

|f (xi)− f (xi−1)| > Tf(x)− ε

Tf(y) ≥ |f (y)− f (x)| +
N∑

i=1

|f (xi)− f (xi−1)|

Tf(y) > |f (x)− f (y)| + Tf(x)− ε

14



Consequences
1) The sequence (f (xn)) is Cauchy if the sequence
(Tf(xn)) is also Cauchy.
2) Tf monotone ⇒ right and left limits at every
point, and at most a countable number of discon-
tinuities ⇒ same properties for f .
3) c = limt→0+0 f (t) and g(x) = f (x− 0)− c;
Then g(x) is left-continuous and V 1

0 (g) ≤ V 1
0 (f ).

4) If f ∈ BV (0, 1), then f is differentiable almost
everywhere and [f ′] ∈ L1(0, 1).
5) The space BV (a, b) is not separable.
6) For every bounded sequence in BV (0, 1), there
exists a subsequence converging almost everywhere
on (0, 1).
7) For every p < ∞, the embedding BV (0, 1) →
Lp(0, 1) is compact.
8) The convergence on BV (0, 1) (called the BV −
weak∗ convergence) defined by{

un → u strongly in L1(a, b)

u′n → u′ weakly* in M(0, 1)

is such that norm bounded sequences in BV (0, 1)
are BV -weakly* compact.
For more details about functions of bounded vari-
ation, see [5] and [10]
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Back to the consumer’s maximization problem
Find xi ∈ NBV (0, 1)` solution of:

Maximize
∫ 1

0

ui(t, xi(t))dt

subject to ∫ 1

0

p(t) · (xi(t)− ωi(t))dt ≤ 0

where ωi ∈ NBV (0, 1)` and p ∈ NBV (0, 1)`.

Let ui : [0, 1] × X → R be Ck, such that ui(t, .)
satisfies the assumptions (1) to (4), with k ≥ 0.

Proposition This problem has a solution in NBV (0, 1)`

for any p ∈ NBV (0, 1)`.

This solution is denoted by

xi(p, wi)

where wi =
∫ 1

0 p(t) · ωi(t)dt.
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Equilibrium in the continuous time setup

Definition. The price function p ∈ NBV (0, 1)` is
an equilibrium price function if∑

i

xi(p,

∫ 1

0

p(t) · xi(t)dt)(θ) =
∑

i

ωi(θ)

for all θ ∈ [0, 1].
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Theorem. If the function r =
∑

i ωi is Cp, with
0 ≤ p ≤ k, then every equilibrium price function
associated with ω = (ωi) is Cp.

Sketch of the proof.
Step 1. Let x = (xi) be the equilibrium allocation
associated with the equilibrium price function p ∈
NBV (0, 1)`. Then x = (xi) is a Pareto optimum.
Step 2. If x = (xi) is a Pareto optimum, there exists
a set of multipliers (1, λ2, . . . , λm) ∈ {1} × Rm−1

++

such that x is the solution of the problem of maxi-
mizing

L(x, λ) = U1(x1) + λ2U2(x2) + · · · + λmUm(xm)

subject to

x1 + x2 + · · · + xm = r.

Step 3. The allocation x = (xi) is a solution of the
above maximization problem if and only if x(t) is
a solution of the problem of maximizing

u1(t, x1(t)) + λ2u2(t, x2(t)) + · · · + λmum(t, xm(t))

subject to the constraint

x1(t) + x2(t) + · · · + xm(t) = r(t).

Step 4. The component x(t) = (xi(t)) is a smooth
function of r(t) and λ2, . . . , λm, and Ck of t ∈ (0, 1).
Step 5. The first order necessary conditions take
the form

λiDui(t, xi(t)) = (µ1(t), . . . , µ`(t))
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Hence µ(t) ∈ X is Ck.
Step 6. The price function p is of the form p = αµ,
where α > 0 is constant. Therefore, p is Ck.
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Equilibrium with liquidity constraints: The po-
lar case
We have the fully constrained liquidity problem if
the budget constraints of consumer i take the form

p(t) · (xi(t)− ωi(t)) ≤ 0

for every t ∈ [0, 1] and every i.
proposition The solution of the consumer’s max-
imization problem satisfies

Maximize ui(xi(t))

subject to

p(t) · (xi(t)− ωi(t)) = 0.

corollary
The allocation x is an equilibrium of the of the
fully constrained liquidity continuous time model
if and only if x(t) is an equilibrium allocation of
the economy defined by the utility functions ui(t, xi(t))
and the resources ωi(t) with i = 1, 2, . . . ,m.

corollary
There are economies for which no continuous equi-
librium solutions exist even with C∞ endowments.
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liquidity constraints
Weaker liquidity constraints can take various forms.
One that corresponds to every day practice is the
following∫ t

0

p(θ) · (xi(θ)− ωi(θ))dθ ≤ α

∫ 1

t

p(θ) · ωi(θ)dθ

with α > 0. In practice, often α is somewhere in
between 0 and .2. One could extend this model
easily by making α a function of time.
One observes that for α = 0, one gets the fully
liquidity constrained model. For α large enough,
one gets the standard Arrow-Debreu (with just one
budget constraint per consumer).
Therefore, one can expect that the introduction of
liquidity constraints (by the imposition of, for ex-
ample, some restrictive monetary policy) may in-
duce discontinuities of the solutions...
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Conclusion

Relationship with Hilbert’s XIXth problem on the
regularity of elliptic partial differential equations.

For a survey of related issues in the Calculus of
Variations, see [7], [8], [5].

The regularity problem in the continuous time Ar-
row-Debreu model is easier to handle than in the
Calculus of Variations. Nevertheless, it is very
likely that extending the study to incomplete fi-
nancial markets (and therefore to stronger liquid-
ity constraints than in the Arrow-Debreu model)
will require some of the techniques and methods
of the calculus of variations, not the least being
the tools and methods of the direct approach with
which the Italian mathematical community has been
associated with since its early beginnings.
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